- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
香港违法“占中”行动对香港的经济、政治、社会及民生造成重大损失,据香港科技大学经济系教授雷鼎鸣测算,仅香港的“占中”行动开始后一个多月的时间,保守估计造成经济损失
亿港元,相等于平均每名港人承受了
万港元的损失,为了挽回经济损失,某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为
万元时,销售量
万件满足
(其中
,
为正常数).现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润
万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.










(1)将该产品的利润


(2)促销费用投入多少万元时,厂家的利润最大.
有根木料长为6米,要做一个如图的窗框,已知上框架与下框架的高的比为1∶2,问怎样利用木料,才能使光线通过的窗框面积最大(中间木档的面积可忽略不计).

((本小题满分13分)
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为
平方米.
(1)分别写出用
表示
和
的函数关系式(写出函数定义域);
(2)怎样设计能使
取得最大值,最大值为多少?
某市近郊有一块大约500m×500m的接近正方形的荒地,地方政府准备在此建一个综合性休闲广场,首先要建设如图所示的一个矩形场地,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为

(1)分别写出用



(2)怎样设计能使


定义在
上的函数
满足:①当
时,
;②
.设关于
的函数
的零点从小到大依次为
.若
,则
________ ;若
,则
________________.












某房屋开发公司用100万元购得一块土地,该地可以建造每层1000m2的楼房,楼房的总建筑面积(即各层面积之和)每平方米平均建筑费用与建筑高度有关,楼房每升高一层,整幢楼房每平方米建筑费用增加20元。已知建筑5层楼房时,每平方米建筑费用为400元,公司打算造一幢高于5层的楼房,为了使该楼房每平方米的平均综合费用最低(综合费用是建筑费用与购地费用之和),公司应把楼层建成几层?
(本题12分) 我国发射的天宫一号飞行器需要建造隔热层.已知天宫一号建造的隔热层必须使用20年,每厘米厚的隔热层建造成本是6万元,天宫一号每年的能源消耗费用C(万元)与隔热层厚度
(厘米)满足关系式:
,若无隔热层,则每年能源消耗费用为5万元.设
为隔热层建造费用与使用20年的能源消耗费用之和.
(1)求C(
)和
的表达式;
(2)当陋热层修建多少厘米厚时,总费用
最小,并求出最小值.



(1)求C(


(2)当陋热层修建多少厘米厚时,总费用

某同学在电脑上设置一个游戏,他让一弹性球从100m高出下落,每次着地后又跳回原来的高度的一半再落下,则第8次着地时所经过的路程和为( )
A.99.8 m | B.198.4m | C.298.4m | D.266.9m |