- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(本小题满分12分)某创业投资公司拟投资开发某种新能源产品,估计能获得投资收益的范围是
(单位:万元).现准备制定一个对科研课题组的奖励方案:奖金
(单位:万元)随投资收益
(单位:万元)的增加而增加,且奖金不超过
万元,同时奖金不超过投资收益的
.
(Ⅰ)若建立函数模型
制定奖励方案,请你根据题意,写出奖励模型函数应满足的条件;
(Ⅱ)现有两个奖励函数模型:
;
.试分析这两个函数模型是否符合公司要求.





(Ⅰ)若建立函数模型

(Ⅱ)现有两个奖励函数模型:


(本题共12分)有一小型自来水厂,蓄水池中已有水450吨,水厂每小时可向蓄水池注水80吨,同时蓄水池向居民小区供水,
小时内供水总量为
吨。现在开始向池中注水并同时向居民小区供水,问:
(1)多少小时后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?


(1)多少小时后蓄水池中的水量最少?
(2)如果蓄水池中存水量少于150吨时,就会出现供水紧张,那么有几个小时供水紧张?
(本小题7分)已知梯形ABCD中,AD∥BC,∠ABC=∠BAD=
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x,G是BC的中点。沿EF将梯形ABCD翻折,使平面AEFD⊥平面EBCF (如图).


(1)当x=2时,求证:BD⊥EG ;(5分)
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;(7分)



(1)当x=2时,求证:BD⊥EG ;(5分)
(2)若以F、B、C、D为顶点的三棱锥的体积记为f(x),求f(x)的最大值;(7分)
某地拟模仿图甲建造一座大型体育馆,其设计方案侧面的外轮廓线如图乙所示:曲线
是以点
为圆心的圆的一部分,其中
(
,单位:米);曲线
是抛物线
的一部分;
,且
恰好等于圆
的半径. 假定拟建体育馆的高
米.

(1)若要求
米,
米,求
与
的值;
(2)若要求体育馆侧面的最大宽度
不超过
米,求
的取值范围;
(3)若
,求
的最大值.
(参考公式:若
,则
)











(1)若要求





(2)若要求体育馆侧面的最大宽度



(3)若


(参考公式:若


我们定义函数
(
表示不大于
的最大整数)为“下整函数”;定义
(
表示不小于
的最小整数)为“上整函数”;例如
.某停车场收费标准为每小时2元,即不超过1小时(包括1小时)收费2元,超过一小时,不超过2小时(包括2小时)收费4元,以此类推.若李刚停车时间为
小时,则李刚应缴费为(单位:元)








A.![]() | B.![]() | C.![]() | D.![]() |
某种动物繁殖量
(只)与时间
(年)的关系为
,设这种动物第2年有100只,到第8年它们将发展到()



A.200只 | B.300只 | C.400只 | D.500只 |
为了绿化城市,准备在如图所示的区域内修建一个矩形PQRC的草坪,且PQ∥BC,RQ⊥BC,另外△AEF的内部有一文物保护区不能占用,经测量AB=100m,BC=80m,AE=30m,AF=20m.
(1) 求直线EF的方程(4 分 ).
(2) 应如何设计才能使草坪的占地面积最大?
(1) 求直线EF的方程(4 分 ).
(2) 应如何设计才能使草坪的占地面积最大?