- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某种商品在最近40天内没见的销售价格
元与时间
天的函数关系式是:
该商品的销售量
件与
天的函数关系式是:

,求最近40天内这种商品的销售金额的最大值,并指出取得该最大值是第几天?








(本题满分14分)某地上年度电价为
元,年用电量为
亿千瓦时.本年度计划将电价调至
之间,经测算,若电价调至
元,则本年度新增用电量
(亿千瓦时)与
元成反比例.又当
时,
.
(1)求
与
之间的函数关系式;
(2)若每千瓦时电的成本价为
元,则电价调至多少时,本年度电力部门的收益将比上年增加
?[收益=用电量×(实际电价-成本价)]








(1)求


(2)若每千瓦时电的成本价为


(本题满分12分)某商品在近30天内每件的销售价格
(元)与时间
(天)的函数关系是
该商品的日销售量
(件)与时间
(天)的函数关系是
,求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?







(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用
(
且
)个单位的药剂,药剂在血液中的含量
(克)随着时间
(小时)变化的函数关系式近似为
,其中
(Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?
(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用
个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求
的最小值.







(Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?
(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用


(本题满分12分)如图,已知底角为45o的等腰梯形ABCD,底边BC长为7cm,腰长为
,当一条垂直于底边BC(垂足为F,不与B,C重合)的直线L从左至右移动时,直线L把梯形分成两部分,令BF=x,左边部分的面积y.

(1)写出函数y= f(x)的解析式;
(2)求出y= f(x)的定义域,值域.


(1)写出函数y= f(x)的解析式;
(2)求出y= f(x)的定义域,值域.
一个人以6米/秒的速度去追赶停在交通灯前的的汽车,当他离汽车25米时交通灯由红变绿,汽车开始变速直线行驶(汽车与人前进方向相同),汽车在时间t内的路程为
米,那么,此人()

A.可在7秒内追上汽车 |
B.可在9秒内追上汽车 |
C.不能追上汽车,但其间最近距离为14米 |
D.不能追上汽车,但其间最近距离为7米 |
某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元.
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:
,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:
