- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某研究小组在一项实验中获得一组关于
之间的数据,将其整理得到如图所示的散点图,下列函数中最能近似刻画
与
之间关系的是( )





A.![]() | B.![]() | C.![]() | D.![]() |
大数据时代对于现代人的数据分析能力要求越来越高,数据拟合是一种把现有数据通过数学方法来代入某条数式的表示方式,比如
,
,2,
,n是平面直角坐标系上的一系列点,用函数
来拟合该组数据,尽可能使得函数图象与点列
比较接近.其中一种描述接近程度的指标是函数的拟合误差,拟合误差越小越好,定义函数
的拟合误差为:
.已知平面直角坐标系上5个点的坐标数据如表:
若用一次函数
来拟合上述表格中的数据,求该函数的拟合误差
的最小值,并求出此时的函数解析式
;
若用二次函数
来拟合题干表格中的数据,求
;
请比较第
问中的
和第
问中的
,用哪一个函数拟合题目中给出的数据更好?
请至少写出三条理由








x | 1 | 3 | 5 | 7 | 9 |
y | 12 | ![]() | 4 | ![]() | 12 |














玉溪某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产
件,则平均仓储时间为
天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( )


A.60件 | B.80件 | C.100件 | D.120件 |
为贯彻执行党中央“不忘初心,牢记使命”主题教育活动,增强企业的凝聚力和竞争力。某重装企业的装配分厂举行装配工人技术大比武,根据以往技术资料统计,某工人装配第n件工件所用的时间(单位:分钟)
大致服从的关系为
(k、M为常数).已知该工人装配第9件工件用时20分钟,装配第M件工件用时12分钟,那么可大致推出该工人装配第4件工件所用时间是( )


A.40分钟 | B.35分钟 | C.30分钟 | D.25分钟 |
某学校数学建模小组为了研究双层玻璃窗户中每层玻璃厚度
(每层玻璃的厚度相同)及两层玻璃间夹空气层厚度
对保温效果的影响,利用热传导定律得到热传导量
满足关系式:
,其中玻璃的热传导系数
焦耳/(厘米
度),不流通、干燥空气的热传导系数
焦耳/(厘米
度),
为室内外温度差.
值越小,保温效果越好.现有4种型号的双层玻璃窗户,具体数据如下表:
则保温效果最好的双层玻璃的型号是________型.










型号 | 每层玻璃厚度![]() (单位:厘米) | 玻璃间夹空气层厚度![]() (单位:厘米) |
A型 | ![]() | ![]() |
B型 | ![]() | ![]() |
C型 | ![]() | ![]() |
D型 | ![]() | ![]() |
则保温效果最好的双层玻璃的型号是________型.
设光线通过一块玻璃,强度损失10%、如果光线原来的强度为
,通过x块这样的玻璃以后强度为y,则
,那么光线强度减弱到原来的
以下时,至少通过这样的玻璃块数为( )(参考数据:
)




A.9 | B.10 | C.11 | D.12 |
某商贸公司售卖某种水果.经市场调研可知:在未来
天内,这种水果每箱的销售利润
(单位:元)与时间
,单位:天)之间的函数关系式为
, 且日销售量
(单位:箱)与时间
之间的函数关系式为
①第
天的销售利润为__________元;
②在未来的这
天中,公司决定每销售
箱该水果就捐赠
元给 “精准扶贫”对象.为保证销售积极性,要求捐赠之后每天的利润随时间
的增大而增大,则
的最小值是__________.







①第

②在未来的这





某地要建造一个边长为2(单位:
)的正方形市民休闲公园
,将其中的区域
开挖成一个池塘,如图建立平面直角坐标系后,点
的坐标为
,曲线
是函数
图像的一部分,过边
上一点
在区域
内作一次函数
(
)的图像,与线段
交于点
(点
不与点
重合),且线段
与曲线
有且只有一个公共点
,四边形
为绿化风景区.

(1)求证:
;
(2)设点
的横坐标为
,
①用
表示
、
两点的坐标;
②将四边形
的面积
表示成关于
的函数
,并求
的最大值.





















(1)求证:

(2)设点


①用



②将四边形





把物体放在空气中冷却,如果物体原来的温度是
,空气温度是
,
分钟后温度
可由公式
求得,现有
的物体放在
的空气中冷却,当物体温度降为
时,所用冷却时间
____________分钟.









用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用1个单位量的水可洗掉蔬菜上残留农药量的
,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用
单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数
.
(1)试规定
的值,并解释其实际意义;
(2)试根据假定写出函数
应该满足的条件和具有的性质;
(3)设
.现有
单位量的水,可以清洗一次,也可以把水平均分成2份后清洗两次,试问用哪种方案清洗后蔬菜上残留的农药量比较省?说明理由.



(1)试规定

(2)试根据假定写出函数

(3)设

