国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4000元的按超过800元的14%纳税;超过4000元的按全稿酬的11%纳税.某人出版了一书共纳税420元,这个人的稿费为____元.
当前题号:1 | 题型:填空题 | 难度:0.99
美国对中国芯片的技术封锁,这却激发了中国“芯”的研究热潮,中国华为公司研发的两种芯片都已获得成功.该公司研发芯片已经耗费资金千万元,现在准备投入资金进行生产,经市场调查与预测,生产芯片的毛收入与投入的资金成正比,已知每投入千万元,公司获得毛收入千万元;生产芯片的毛收入(千万元)与投入的资金(千万元)的函数关系为都为常数),其图象如图所示.

(1)试分别求出生产两种芯片的毛收入(千万元)与投入资金(千万元)函数关系式;
(2)现在公司准备投入亿元资金同时生产两种芯片,设投入千万元生产芯片,用表示公司所获利润,当为多少时,可以获得最大利润?并求最大利润.(利润芯片毛收入芯片毛收入研发耗费资金)
当前题号:2 | 题型:解答题 | 难度:0.99
近年来,来自“一带一路”沿线的20国青年评选出了中国的“新四大发明”:高铁、扫码支付、共享单车和网购.其中共享单车既响应绿色出行号召,节能减排,保护环境,又方便人们短距离出行,增强灵活性.某城市试投放3个品牌的共享单车分别为红车、黄车、蓝车,三种车的计费标准均为每15分钟(不足15分钟按15分钟计)1元,按每日累计时长结算费用,例如某人某日共使用了24分钟,系统计时为30分钟.A同学统计了他1个月(按30天计)每天使用共享单车的时长如茎叶图所示,不考虑每月自然因素和社会因素的影响,用频率近似代替概率.设A同学每天消费元.

(1)求的分布列及数学期望;
(2)各品牌为推广用户使用,推出APP注册会员的优惠活动:红车月功能使用费8元,每天消费打5折;黄车月功能使用费20元,每天前15分钟免费,之后消费打8折;蓝车月功能使用费45元,每月使用22小时之内免费,超出部分按每15分钟1元计费.设分别为红车,黄车,蓝车的月消费,写出的函数关系式,参考(1)的结果,A同学下个月选择其中一个注册会员,他选哪个费用最低?
(3)该城市计划3个品牌的共享单车共3000辆正式投入使用,为节约居民开支,随机调查了100名用户一周的平均使用时长如下表:
时长
(0,15]
(15,30]
(30,45]
(45,60]
人数
16
45
34
5
 
在(2)的活动条件下,每个品牌各应该投放多少辆?
当前题号:3 | 题型:解答题 | 难度:0.99
我校为丰富师生课余活动,计划在一块直角三角形的空地上修建一个占地面积为(平方米)的矩形健身场地,如图,点上,点上,且点在斜边上,已知米,米,.设矩形健身场地每平方米的造价为元,再把矩形以外(阴影部分)铺上草坪,每平方米的造价为元(为正常数)

(1)试用表示,并求的取值范围;
(2)求总造价关于面积的函数;
(3)如何选取,使总造价最低(不要求求出最低造价)
当前题号:4 | 题型:解答题 | 难度:0.99
某纪念章从某年某月某日起开始上市,通过市场调査,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下:
上市时间



市场价



 
(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③;④
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.
当前题号:5 | 题型:解答题 | 难度:0.99
有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从(    )年开始,快递行业产生的包装垃圾超过4000万吨.
(参考数据:
A.2018B.2019C.2020D.2021
当前题号:6 | 题型:单选题 | 难度:0.99
在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量单位:万件与售价单位:元之间满足函数关系A的单件成本单位:元与销量y之间满足函数关系
当产品A的售价在什么范围内时,能使得其销量不低于5万件?
当产品A的售价为多少时,总利润最大?注:总利润销量售价单件成本
当前题号:7 | 题型:解答题 | 难度:0.99
今有一组实验数据如下:
t
1.99
3.0
4.0
5.1
6.12
v
1.5
4.04
7.5
12
18.01
 
现准备用下列函数中的一个近似地表示这些数据满足的规律,其中最接近的一个是( )
A.B.C.D.
当前题号:8 | 题型:单选题 | 难度:0.99
市场上有一种新型的强力洗衣液,特点是去污速度快.已知每投放,且)个单位的洗衣液在一定量水的洗衣机中,它在水中释放的浓度(克/升)随着时间(分钟)变化的函数关系式近似为,其中.若多次投放,则某一时刻水中的洗衣液浓度为每次投放的洗衣液在相应时刻所释放的浓度之和.根据经验,当水中洗衣液的浓度不低于(克/升)时,它才能起到有效去污的作用.
(1)当一次投放个单位的洗衣液时,求在分钟时,洗衣液在水中释放的浓度.
(2)在(1)的情况下,即一次投放个单位的洗衣液,则有效去污时间可达几分钟?
(3)若第一次投放个单位的洗衣液,分钟后再投放个单位的洗衣液,请你写出第二次投放之后洗衣液在水中释放的浓度(克/升)与时间(分钟)的函数关系式,求出最低浓度,并判断接下来的四分钟是否能够持续有效去污.
当前题号:9 | 题型:解答题 | 难度:0.99