刷题首页
题库
高中数学
题干
甲、乙两地相距
,汽车从甲地匀速行驶到乙地,速度不超过
.已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度
(单位:
)的平方成正比,且比例系数为
,固定部分为
元.
(1)把全程运输成本
(元)表示为速度
的函数,并求出当
,
时,汽车应以多大速度行驶,才能使得全程运输成本最小;
(2)随着汽车的折旧,运输成本会发生一些变化,那么当
,
元,此时汽车的速度应调整为多大,才会使得运输成本最小.
上一题
下一题
0.99难度 解答题 更新时间:2019-11-29 10:09:28
答案(点此获取答案解析)
同类题1
某型号汽车的刹车距离
s
(单位:米)与刹车时间
t
(单位:秒)的关系为
,其中
k
是一个与汽车的速度以及路面状况等情况有关的量.(注:汽车从刹车开始到完全静止所用的时间叫做刹车时间,所经过的距离叫做刹车距离.)
(1)某人在行驶途中发现前方大约10米处有一障碍物,若此时
k
=8,紧急刹车的时间少于1秒,试问此人是否要紧急避让?
(2)要使汽车的刹车时间不小于1秒,且不超过2秒,求
k
的取值范围.
同类题2
已知甲、乙两地相距为
千米,汽车从甲地匀速行驶到乙地,速度每小时不超过
千米.已知汽车每小时的运输成本(单位:元)由可变部分和固定部分组成:固定部分为
元,可变部分与速度
(单位;
)的平方成正比,且比例系数为
.
(1)求汽车全程的运输成本
(单位:元)关于速度
(单位;
)的函数解析式;
(2)为了全程的运输成本最小,汽车应该以多大的速度行驶?
同类题3
某商店经营的某种消费品的进价为每件14元,月销售量
(百件)与每件的销售价格
(元)的关系如图所示,每月各种开支2 000元.
(1)写出月销售量
(百件)关于每件的销售价格
(元)的函数关系式.
(2)写出月利润
(元)与每件的销售价格
(元)的函数关系式.
(3)当该消费品每件的销售价格为多少元时,月利润最大?并求出最大月利润.
同类题4
大学生王某开网店创业专卖某种文具,他将这种文具以每件2元的价格售出,开始第一个月就达到1万件,此后每个月都比前一个月多售出1.5万件,持续至第10个月,在第11个月出现下降,第11个月出售了13万件,第12个月出售了9万件,第13个月出售了7万件,另据观察,第18个月销量仍比上个月低,而他前十个月每月投入的成本与月份的平方成正比,第4个月成本为8000元,但第11个月起每月成本固定为3万元,现打算用函数
(
)或
(
,
,
)来模拟销量下降期间的月销量.
(1)请判断销量下降期间采用哪个函数模型来模拟销量函数更合理,并写出前20个月销量与月份
之间的函数关系式;
(2)前20个月内,该网店取得的月利润的最高纪录是多少,出现在哪个月?
同类题5
2018年
年月某市邮政快递业务量完成件数较2017年月
月同比增长
,如图为该市2017年
月邮政快递业务量柱状图及2018年
月邮政快递业务量饼图,根据统计图,解决下列问题
年
月该市邮政快递同城业务量完成件数与2017年
月相比是有所增大还是有所减少,并计算,2018年
月该市邮政快递国际及港澳台业务量同比增长率;
若年平均每件快递的盈利如表所示:
快递类型
同城
异地
国际及港澳台
盈利
元
件
5
25
估计该市邮政快递在2018年
月的盈利是多少?
相关知识点
函数与导数
函数的应用
函数模型及其应用
函数模型的应用实例
利用给定函数模型解决实际问题