- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某产品生产厂家根据以往销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为g(x)(万元),其中固定成本为2万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足
假设该产品产销平衡,试根据上述资料分析:
(Ⅰ)要使工厂有盈利,产量x应控制在什么范围内;
(Ⅱ)工厂生产多少台产品时,可使盈利最多?
(Ⅲ)当盈利最多时,求每台产品的售价.

(Ⅰ)要使工厂有盈利,产量x应控制在什么范围内;
(Ⅱ)工厂生产多少台产品时,可使盈利最多?
(Ⅲ)当盈利最多时,求每台产品的售价.
某机构通过对某企业2018年的前三个季度生产经营情况的调查,得到每月利润
(单位:万元)与相应月份数
的部分数据如表:
(1)根据上表数据,请从下列三个函数中选取一个恰当的函数描述
与x的变化关系,并说明理由:
,
,
(2)利用(1)中选择的函数:
①估计月利润最大的是第几个月,并求出该月的利润;
②预估年底12月份的利润是多少?


![]() | 3 | 6 | 9 |
![]() | 241 | 244 | 229 |
(1)根据上表数据,请从下列三个函数中选取一个恰当的函数描述




(2)利用(1)中选择的函数:
①估计月利润最大的是第几个月,并求出该月的利润;
②预估年底12月份的利润是多少?
李冶(1192-1279),真定栾城(今属河北石家庄市)人,金元时期的数学家、诗人、晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径,正方形的边长等,其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为
亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:
平方步为
亩,圆周率按
近似计算)




A.![]() ![]() | B.![]() ![]() | C.![]() ![]() | D.![]() ![]() |
某辆汽车以
的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求
)时,每小时的油耗(所需要的汽油量)为
,其中
为常数.若汽车以
的速度行驶时,每小时的油耗为
,则
=_____,欲使每小时的油耗不超过
,则速度
的取值范围为_______.









为了迎接世博会,某旅游区提倡低碳生活,在景区提供自行车出租.该景区有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆.为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得).
(1)求函数
的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
(1)求函数

(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
水池有两个相同的进水口和一个出水口,每个口进出水速度如图(甲)、(乙)所示,某天0点到6点该水池蓄水量如图(丙)所示(至少打开一个水口)给出以下3个论断:

①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到5点不进水也不出水.
则一定正确的论断是( )

①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到5点不进水也不出水.
则一定正确的论断是( )
A.① | B.①② | C.①③ | D.①②③ |
学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数y与听课时间x(单位:分钟)之间的关系满足如图所示的图象,当x∈(0,12]时,图象是二次函数图象的一部分,其中顶点A(10,80),过点B(12,78);当x∈[12,40]时,图象是线段BC,其中C(40,50).根据专家研究,当注意力指数大于62时,学习效果最佳.
(1)试求y=f(x)的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.
(1)试求y=f(x)的函数关系式;
(2)教师在什么时段内安排内核心内容,能使得学生学习效果最佳?请说明理由.

(2017-2018学年上海市杨浦区高三数学一模)如图所示,用总长为定值
的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.

(1)设场地面积为
,垂直于墙的边长为
,试用解析式将
表示成
的函数,并确定这个函数的定义域;
(2)怎样围才能使得场地的面积最大?最大面积是多少?


(1)设场地面积为




(2)怎样围才能使得场地的面积最大?最大面积是多少?
某种细菌在培养过程中,每20分钟分裂一次(一个分裂二个)经过3小时,这种细菌由1个可以繁殖成()
A.511个 | B.512个 | C.1023个 | D.1024个 |
随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式。最新调查表明,人们对于投资理财的兴趣逐步提高。某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下:
①投资
产品的收益与投资额的算术平方根成正比;
②投资
产品的收益与投资额成正比.
公司提供了投资1万元时两种产品的收益,分别是0.4万元和0.2万元。
(1) 分别求出
产品的收益
、
产品的收益
与投资额
的函数关系式;
(2) 假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?
①投资

②投资

公司提供了投资1万元时两种产品的收益,分别是0.4万元和0.2万元。
(1) 分别求出





(2) 假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?