- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一种专门占据内存的计算机病毒开机时占据2KB内存,然后每3秒自身复制一次,复制后所占内存是原来的2倍,那么开机______________秒,该病毒占据64 MB内存 (1MB=210KB).
人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.Malthus,1766—1834)就提出了自然状态下的人口增长模型:
,其中x表示经过的时间,
表示x=0时的人口,r表示人口的平均增长率.
下表是1950―1959年我国人口数据资料:

如果以各年人口增长率的平均值作为我国这一时期的人口增长率,用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,某同学利用图形计算器进行了如下探究:

由此可得到我国1950―1959年我国这一时期的具体人口增长模型为____________. (精确到0.001)


下表是1950―1959年我国人口数据资料:

如果以各年人口增长率的平均值作为我国这一时期的人口增长率,用马尔萨斯人口增长模型建立我国这一时期的具体人口增长模型,某同学利用图形计算器进行了如下探究:


由此可得到我国1950―1959年我国这一时期的具体人口增长模型为____________. (精确到0.001)
(本小题满分14分)
设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比。一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元。设每天的购票人数为
,盈利额为
元。
(Ⅰ)求
与
之间的函数关系;
(Ⅱ)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?
(参考数据:
.)
设某旅游景点每天的固定成本为500元,门票每张为30元,变动成本与购票进入旅游景点的人数的算术平方根成正比。一天购票人数为25时,该旅游景点收支平衡;一天购票人数超过100时,该旅游景点须另交保险费200元。设每天的购票人数为


(Ⅰ)求


(Ⅱ)该旅游景点希望在人数达到20人时即不出现亏损,若用提高门票价格的措施,则每张门票至少要多少元(取整数)?
(参考数据:

声强级
(单位:
)由公式
给出,其中
为声强(单位:
).
(1)一般正常人听觉能忍受的最高声强为
,能听到的最低声强为
,求人听觉的声强级范围;
(2)在一演唱会中,某女高音的声强级高出某男低音的声强级
,请问该女高音的声强是该男低音声强的多少倍?





(1)一般正常人听觉能忍受的最高声强为


(2)在一演唱会中,某女高音的声强级高出某男低音的声强级

某花店每天以每枝
元的价格从农场购进若干枝玫瑰花,然后以每枝
元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(1)若花店一天购进
枝玫瑰花,求当天的利润
(单位:元)关于当天需求量
(单位:枝,
)的函数解析式.
(2)花店记录了
天玫瑰花的日需求量(单位:枝),整理得下表:
假设花店在这
天内每天购进
枝玫瑰花,求这
天的日利润(单位:元)的平均数.


(1)若花店一天购进




(2)花店记录了

日需求量![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
假设花店在这



某单位用2160万元购得一块空地,计划在该空地上建造一栋至少10层,每层2000平方米的楼房.经测算,如果将楼房建为x(x≥10)层,则每平方米的平均建筑费用为560+48x(单位:元).
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)
(1)写出楼房平均综合费用y关于建造层数x的函数关系式;
(2)该楼房应建造多少层时,可使楼房每平方米的平均综合费用最少?最少值是多少?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用/建筑总面积)
某厂生产一种产品的固定成本(即固定投入)为0.5万元,但每生产一百件这样的产品,需要增加可变成本(即另增加投入)0.25万元. 市场对此产品的年需求量为500件,销售的收入函数为
=
(单位:万元),其中
是产品售出的数量(单位:百件).
(1)该公司这种产品的年产量为
百件,生产并销售这种产品所得到的利润为当年产量
的函数
,求
;
(2)当年产量是多少时,工厂所得利润最大?



(1)该公司这种产品的年产量为




(2)当年产量是多少时,工厂所得利润最大?
某产品的总成本
(万元)与产量
(台)之间的函数关系式为
(
,
),若每台产品的售价为
万元,则当产量为
台时,生产者可获得的利润为( )







A.![]() | B.![]() | C.![]() | D.![]() |
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形
(如图所示,其中O为圆心,
在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).

(1)求V关于θ的函数表达式;
(2)求
的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.




(1)求V关于θ的函数表达式;
(2)求

(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.