- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
三个变量
,
,
随着变量
的变化情况如下表:
则关于
分别呈对数函数、指数函数、幂函数变化的变量依次为( )




![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
则关于

A.![]() ![]() ![]() | B.![]() ![]() ![]() |
C.![]() ![]() ![]() | D.![]() ![]() ![]() |
为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年的女干部,据此方案,她退休的年份是( )
A.2019 | B.2020 | C.2021 | D.2022 |
某市出租车的现行计价标准是:路程在2 km以内(含2 km)按起步价8元收取,超过2 km后的路程按1.9 元/km收取,但超过10 km后的路程需加收50%的返空费(即单价为1.9×(1+50%)=2.85(元/km)).
(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?
(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
(1)将某乘客搭乘一次出租车的费用f(x)(单位:元)表示为行程x(0<x≤60,单位:km)的分段函数;
(2)某乘客的行程为16 km,他准备先乘一辆出租车行驶8 km后,再换乘另一辆出租车完成余下行程,请问:他这样做是否比只乘一辆出租车完成全部行程更省钱?
(现实中要计等待时间且最终付费取整数,本题在计算时都不予考虑)
某市垃圾处理站每月的垃圾处理量最少为400吨,最多为600吨,月处理成本
(元)与月垃圾处理量
(吨)之间的函数关系可近似地表示为
,且每处理一吨垃圾得到可利用的资源值为100元.
(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?



(1)该站每月垃圾处理量为多少吨时,才能使每吨垃圾的平均处理成本最低?
(2)该站每月能否获利?如果获利,求出最大利润;如果不获利,则需要市财政补贴,至少补贴多少元才能使该站不亏损?
为了预防甲型
流感,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时室内每立方米空气中的含药量
与时间
成正比例,药物燃烧完后满足
,如图所示,现测得药物8
燃毕,此时室内空气中每立方米的含药量为6
,请按题中所供给的信息,解答下列各题.

(1)求
关于
的函数解析式;
(2)研究表明,当空气中每立方米的含药量不低于
且持续时间不低于
时才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?







(1)求


(2)研究表明,当空气中每立方米的含药量不低于


已某驾驶员喝了m升酒后,血液中酒精的含量f(x)(毫克/毫升)随时间x(小时)变化的规律近似满足表达式
《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量不得超过0.02毫克/毫升.此驾驶员至少要过( )小时后才能开车.(精确到1小时)

A.2 | B.3 | C.4 | D.5 |
某食品的保鲜时间
(单位:小时)与储存温度
(单位:
)满足函数关系
(
为自然对数的底数,
为常数),若该食品在
的保鲜时间是
小时,在
的保鲜时间是
小时,则该食品在
的保鲜时间是( )小时.











A.![]() | B.![]() | C.![]() | D.![]() |
某商品在最近100天内的单价f(t)与时间t的函数关系是f(t)=
,日销售量g(t)与时间t的函数关系是g(t)=-
+
(0≤t≤100,t∈N),则这种商品的日销售额的最大值为________.


