- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- + 函数的应用
- 函数与方程
- 函数模型及其应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
.
(1)求
的最小正周期及单调增区间;
(2)当x取何值时,
取最大值?最大值是多少?
(3)若函数
在区间[a,b]上至少含有30个零点,在所有满足条件的区间中,求
的最小值.

(1)求

(2)当x取何值时,

(3)若函数


设
是函数
定义域内的一个区间,若存在
,使得
,则称
是
的一个“次不动点”,也称
在区间
上存在次不动点.若函数
在区间
上存在次不动点,则实数
的取值范围是()











A.![]() | B.![]() |
C.![]() | D.![]() |
若函数f(x)=3x2-5x+a的一个零点在区间(-2,0)内,另一个零点在区间(1,3)内,则实数a的取值范围是________.
某同学在借助计算器求“方程lgx=2-x的近似解(精确度为0.1)”时,设f(x)=lgx+x-2,算得f(1)<0,f(2)>0;在以下过程中,他用“二分法”又取了4个x的值,计算了其函数值的正负,并得出判断:方程的近似解是x≈1.8.那么他再取的x的4个值依次是________.
已知函数f(x)=3ax2+2bx+c,a+b+c=0,f(0)>0,f(1)>0,证明a>0,并利用二分法证明方程f(x)=0在区间[0,1]内有两个实根.