- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- + 函数的对称性
- 判断函数的对称性
- 由对称性求函数的解析式
- 由对称性研究单调性
- 函数对称性的应用
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于定义域为
的函数
,若满足①
;②当
,且
时,都有
;③当
,且
时,
,则称
为“偏对称函数”.现给出四个函数:
①
; ②
;
③
; ④
.
则其中是“偏对称函数”的函数为__________.










①


③


则其中是“偏对称函数”的函数为__________.
已知向量
,
,函数
.
(1)若
,
,求
;
(2)求
在
上的值域;
(3)将
的图象向左平移
个单位得到
的图象,设
,判断
的图象是否关于直线
对称,请说明理由.



(1)若



(2)求


(3)将





