- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设奇函数f(x)在x∈[-1,1]上是增函数,且f(-1)=-1,若函数f(x)≤t2-2at+1对所有的x∈[-1,1]都成立,则当a∈[-1,1]时,求t的取值范围。
已知函数f(x)为增函数,当x,y∈R时,恒有f(x+y)=f(x)+f(y)
(1)求证:f(x)是奇函数.
(2)是否存在m,使
,对于任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.
(1)求证:f(x)是奇函数.
(2)是否存在m,使
