- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,x∈(b﹣3,2b)是奇函数,
(1)求a,b的值;
(2)若f(x)是区间(b﹣3,2b)上的减函数且f(m﹣1)+f(2m+1)>0,求实数m的取值范围.

(1)求a,b的值;
(2)若f(x)是区间(b﹣3,2b)上的减函数且f(m﹣1)+f(2m+1)>0,求实数m的取值范围.
已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=
,则实数a的取值范围为 ( )

A.![]() | B.(﹣2,1) | C.![]() | D.![]() |
已知f(x)是定义在R上的以3为周期的偶函数,若f(1)<1,f(5)=
,则实数a的取值范围为( )

A.(-1,4) | B.(-2,0) | C.(-1,0) | D.(-1,2) |
已知函数f(x)是定义在R上的奇函数,若g(x)=f(x+1)+5,g′(x)为g(x)的导函数,对∀x∈R,总有g′(x)>2x,则g(x)<x2+4的解集为________.
已知函数f(x)是R上的偶函数,在(-3,-2)上为减函数,对∀x∈R都有f(2-x)=f(x),若A,B是钝角三角形ABC的两个锐角,则( )
A.f(sinA)<f(cosB) | B.f(sinA)>f(cosB) |
C.f(sinA)=f(cosB) | D.f(sinA)与f(cosB)的大小关系不确定 |