- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- + 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若奇函数f(x)当1≤x≤4时的解析式是f(x)=x2-4x+5,则当-4≤x≤-1时,f(x)的最大值是( )
A.5 | B.-5 |
C.-2 | D.-1 |
定义在R上的奇函数f(x),当x>0时,f(x)=3,则奇函数f(x)的值域是( )
A.(-∞,-3] | B.[-3,3] |
C.[-3,3] | D.{-3,0,3} |
设f(x)为定义在R上的奇函数。当x≥0时,f(x)=2x+2x+b(b为常数),则f(-2)等于( ).
A.-7 | B.-3 | C.7 | D.3 |