- 集合与常用逻辑用语
- 函数与导数
- + 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数f(x)=xk(k∈R,且为常数).
(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并证明;
(Ⅱ)当k=1时,设函数g(x)=f(x)-
,利用函数的单调性的定义证明函数y=g(x)在x∈(0,+∞)为单调递增函数.
(Ⅰ)当k=3时,判断函数f(x)的奇偶性,并证明;
(Ⅱ)当k=1时,设函数g(x)=f(x)-

设函数f(x)在R上存在导数f′(x),对任意的x∈R,有f(x)+f(-x)=x2,且x∈(0,+∞)时,f′(x)<x.若f(1-a)-f(a)≥
-a,则实数a的取值范围是______ .

设函数
(其中a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由.
(2)若
,试判断函数f(x)在区间[1,+∞)上的单调性,并用函数单调性定义给出证明.

(1)讨论函数f(x)的奇偶性,并说明理由.
(2)若

已知函数f(x)满足:①对任意x∈R,f(x)+f(-x)=0,f(x+4)+f(-x)=0成立;②当x∈(0,2]时,f(x)=x(x-2),则f(2019)=( )
A.1 | B.0 | C.2 | D.![]() |