- 集合与常用逻辑用语
- 函数与导数
- 利用函数单调性求最值
- + 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(1)证明函数
为奇函数;
(2)判断函数
的单调性(无需证明),并求函数
的值域;
(3)是否存在实数
,使得
的最大值为
?若存在,求出
的取值范围;若不存在,请说明理由.


(1)证明函数

(2)判断函数


(3)是否存在实数




已知y = f (x)是偶函数,定义x≥0时,
,
(1)求f (-2);
(2)当x<-3时,求f (x)的解析式;
(3)设函数y=f (x)在区间[-5,5]上的最大值为g (a),试求g (a)的表达式.

(1)求f (-2);
(2)当x<-3时,求f (x)的解析式;
(3)设函数y=f (x)在区间[-5,5]上的最大值为g (a),试求g (a)的表达式.
若函数
对定义域内的每一个值
在其定义域内都存在唯一的
使
成立,则称该函数为“依赖函数”.
(1)判断函数
是否为“依赖函数”,并说明理由;
(2)若函数
在定义域
上为“依赖函数”,求实数
乘积
的取值范围;
(3)已知函数
在定义域
上为“依赖函数”,若存在实数
使得对任意的
有不等式
都成立,求实数
的最大值.




(1)判断函数

(2)若函数




(3)已知函数





