- 集合与常用逻辑用语
- 函数与导数
- + 利用函数单调性求最值
- 根据函数的最值求参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业接到生产3000台某产品的
三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件),已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产
部件的人数为
,分别写出完成
三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.

(1)设生产



(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
(本小题满分l2分)
对于定义在区间D上的函数
,若存在闭区间[a,b]
D和常数c,使得对任意x1
[a,b],都有
,且对任意x2
D,当x2
[a,b]时
恒成立,则称函数f(x)为区间D上的“平底型”函数
(I)若函数
="|mx-1|" +|x -2|是R上的“平底型”函数,求m的值;
(Ⅱ)判断函数
=x+|x-l|是否为R上的“平底型”函数?并说明理由;
(Ⅲ)若函数g(x)="px+" |x –q|是区间[0,+∞)上的“平底型”函数,且函数的最小值为1,求p,q
的值.
对于定义在区间D上的函数







(I)若函数

(Ⅱ)判断函数

(Ⅲ)若函数g(x)="px+" |x –q|是区间[0,+∞)上的“平底型”函数,且函数的最小值为1,求p,q
的值.
(本小题满分16分)已知函数f(x)=
是定义在R上的奇函数,其值域为
.
(1) 试求a、b的值;
(2) 函数y=g(x)(x∈R)满足:
条件1:当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).
① 求函数g(x)在x∈[3,9)上的解析式;
② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.


(1) 试求a、b的值;
(2) 函数y=g(x)(x∈R)满足:
条件1:当x∈[0,3)时,g(x)=f(x);条件2: g(x+3)=g(x)lnm(m≠1).
① 求函数g(x)在x∈[3,9)上的解析式;
② 若函数g(x)在x∈[0,+∞)上的值域是闭区间,试探求m的取值范围,并说明理由.
已知函数
对任意实数
均有
,其中常数
为负数,且
在区间
有表达式
.
(1)求
、
的值(用
表示);
(2)写出
在
上的表达式,并讨论
在
上的单调性(不要证明);
(3)求出
在
上最小值与最大值,并求出相应的自变量的取值.







(1)求



(2)写出




(3)求出


求下列函数的最值:
(1)函数
的最大值为____________;
(2)函数
在区间[1,5]上的最大值为____________,最小值为____________;
(3)函数
的最大值为____________;
(4)设函数
,
,则
的最大值为____________.
(1)函数

(2)函数

(3)函数

(4)设函数


