- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将函数
的图象向左平移1个单位,再向下平移1个单位得到函数
,则函数
的图象与函数
图象所有交点的横坐标之和等于( )




A.12 | B.4 | C.6 | D.8 |
已知集合
,
.
(1)判断
与集合
的关系,并说明理由;
(2)
中的元素是否都是周期函数,证明结论;
(3)
中的元素是否都是奇函数,证明你的结论.


(1)判断


(2)

(3)

设函数
和
都是定义在集合
上的函数,对于任意的
,都有
成立,称函数
与
在
上互为“互换函数”.
(1)函数
与
在
上互为“互换函数”,求集合
;
(2)若函数
(
且
)与
在集合
上互为“互换函数”,求证:
;
(3)函数
与
在集合
且
上互为“互换函数”,当
时,
,且
在
上是偶函数,求函数
在集合
上的解析式.








(1)函数




(2)若函数






(3)函数









