- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
对于三次函数
,现给出定义:设
是函数
的导数,
是
的导数,若方程
=0有实数解
,则称点(
,
)为函数
的“拐点”.经过探究发现:任何一个三次函数都有“拐点”,任何一个三次函数都有对称中心,且“拐点”就是对称中心.设函数
,则
____.












已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)-mf(x)在[-1,1]上是增函数,求实数m的取值范围.