- 集合与常用逻辑用语
- 函数与导数
- 函数及其表示
- + 函数的基本性质
- 函数的单调性
- 函数的最值
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如果函数
在其定义域内存在实数
,使得
(
为常数)成立,则称函数
为“对
的可拆分函数”.若
为“对2的可拆分函数”,则非零实数
的最大值是______.








已知函数
,如果存在给定的实数对
,使得
恒成立,则称
为“
函数”.
(1) 判断函数
是否是“
函数”;
(2) 若
是一个“
函数”,求出所有满足条件的有序实数对
;
(3) 若定义域为R的函数
是“
函数”,且存在满足条件的有序实数对(0,1)和(1,4),当xÎ[0,1]时,
的值域为[1,2],求当xÎ[-2016,2016]时函数
的值域.





(1) 判断函数


(2) 若



(3) 若定义域为R的函数



