- 集合与常用逻辑用语
- 函数与导数
- + 函数及其性质
- 函数及其表示
- 函数的基本性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知二次函数
的最小值为-1,且关于
的一元二次不等式
的解集为
.
(1)求函数
的解析式;
(2)设
,其中
,求函数
在
时的最大值
;
(3)若
(
为实数),对于任意
,总存在
使得
成立,求实数
的取值范围.




(1)求函数

(2)设





(3)若






定义域为
的函数
满足:对于任意的实数
,
都有
成立,且当
时,
恒成立,且
(
是一个给定的正整数).
(1)判断函数
的奇偶性,并证明你的结论;
(2)
时,解关于
的不等式
.









(1)判断函数

(2)



已知函数
,其中
为实数
(1)当
时,若
在区间
上恒成立,求实数
的取值范围;
(2)是否存在实数
,使得关于
的方程
有三个不同的实数解?若存在,求实数
的取值范围;若不存在,请说明理由.


(1)当




(2)是否存在实数



