- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
请你设计一个包装盒,如图所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得
四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm2

(1)若广告商要求包装盒侧面积S(cm
)最大,试问x应取何值?
(2)若广告商要求包装盒容积V(cm
)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.


(1)若广告商要求包装盒侧面积S(cm

(2)若广告商要求包装盒容积V(cm

如图,半圆
是某爱国主义教育基地一景点的平面示意图,半径
的长为
百米.为了保护景点,基地管理部门从道路
上选取一点
,修建参观线路
,且
,均与半圆相切,四边形
是等腰梯形,设
百米,记修建每
百米参观线路的费用为
万元,经测算
.


(1)用
表示线段
的长;
(2)求修建参观线路的最低费用.














(1)用


(2)求修建参观线路的最低费用.
函数
和
的图像的示意图如图所示,设两函数的图像交于点
,
,且
.

(1)设曲线
,
分别对应函数
和
,请指出图中曲线
,
对应的函数解析式,若不等式
对任意
恒成立,求
的取值范围;
(2)若
,
,且
、
,求
、
的值.






(1)设曲线









(2)若







某农场有一块农田,如图所示,它的边界由圆
的一段圆弧
(
为此圆弧的中点)和线段
构成.已知圆
的半径为40米,点
到
的距离为50米.现规划在此农田上修建两个温室大棚,大棚
内的地块形状为矩形
,大棚
内的地块形状为
,要求
均在线段
上,
均在圆弧上.设
与
所成的角为
.

(1)用
分别表示矩形
和
的面积,并确定
的取值范围;
(2)若大棚
内种植甲种蔬菜,大棚
内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为
.求当
为何值时,能使甲、乙两种蔬菜的年总产值最大.


















(1)用




(2)若大棚




有一矩形硬纸板材料(厚度忽略不计),一边
长为6分米,另一边足够长.现从中截取矩形
(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中
是以
为圆心、
的扇形,且弧
,
分别与边
,
相切于点
,
.
(1)当
长为1分米时,求折卷成的包装盒的容积;
(2)当
的长是多少分米时,折卷成的包装盒的容积最大?











(1)当

(2)当


如图,
是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,
,且
,
的造价分别为5万元
百米,40万元
百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
,
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求
解析式;
(2)当
为多少时,总造价
最低?并求出最低造价.



















(1)求

(2)当



某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.


(1)写出图(1)表示的市场售价与时间的函数关系式
;写出图(2)表示的种植成本与时间的函数关系式
;
(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/
kg,时间单位:天.)


(1)写出图(1)表示的市场售价与时间的函数关系式


(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/
