- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益
、养鸡的收益
与投入
(单位:万元)满足
,
.设甲合作社的投入为
(单位:万元),两个合作社的总收益为
(单位:万元).
(1)当甲合作社的投入为25万元时,求两个合作社的总收益;
(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?







(1)当甲合作社的投入为25万元时,求两个合作社的总收益;
(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元?
2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机
万台,其总成本为
,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入
万元满足
(1)将利润
表示为产量
万台的函数;
(2)当产量
为何值时,公司所获利润最大?最大利润为多少万元?




(1)将利润


(2)当产量

若函数f(x)
tanx的定义域为[﹣1,1],且f(0)=0,则满足f(2x—1)<f(x—m+1)的实数x的取值范围是( )

A.(0,1] | B.(﹣1,0) | C.[1,2) | D.[0,1) |