- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某城市有一块半径为
的半圆形绿化区域(以
为圆心,
为直径),现对其进行改建,在
的延长线上取点
,
,在半圆上选定一点
,改建后绿化区域由扇形区域
和三角形区域
组成,其面积为
.设
.

(1)写出
关于
的函数关系式
,并指出
的取值范围;
(2)试问
多大时,改建后的绿化区域面积
取得最大值.












(1)写出




(2)试问


(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分)一家公司计划生产某种小型产品的月固定成本为
万元,每生产
万件需要再投入
万元.设该公司一个月内生产该小型产品
万件并全部销售完,每万件的销售收入为
万元,且每万件国家给予补助
万元. (
为自然对数的底数,
是一个常数.)
(Ⅰ)写出月利润
(万元)关于月产量
(万件)的函数解析式;
(Ⅱ)当月生产量在
万件时,求该公司在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件). (注:月利润=月销售收入+月国家补助-月总成本).








(Ⅰ)写出月利润


(Ⅱ)当月生产量在

设函数f(x)是定义在(0,+∞)上的可导函数,其导函数为f′(x),且有2f(x)+xf′(x)>x2,则不等式(x﹣2019)2f(x﹣2019)﹣9f(3)<0的解集为( )
A.(0,2020) | B.(2019,+∞) |
C.(0,2019) | D.(2019,2022) |
对于函数f(x)给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是函数f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现:任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.给定函数
,请你根据上面探究结果,计算f(
)+f(
)+f(
)+……+f(
)=_____.





已知函数f(x)是定义在R上的奇函数,f′(x)为f(x)的导函数,且满足当x<0时,有xf′(x)﹣f(x)<0,则不等式f(x)﹣xf(1)>0的解集为( )
A.(﹣1,0)∪(1,+∞) | B.(﹣∞,0)∪(0,1) |
C.(﹣∞,﹣1)∪(1,+∞) | D.(﹣1,0)∪(0,1) |
若存在两个不相等正实数x,y,使得等式x+a(y-2ex)·(ln y-ln x)=0成立,其中e为自然对数的底数,则实数a的取值范围是( )
A.![]() | B.![]() |
C.![]() | D.(-∞,0) |