如图1,在正方形ABCD和正方形BEFG中,点A,B,E在同一条直线上,连接DF,且P是线段DF的中点,连接PG,PC.
(1)如图1中,PG与PC的位置关系是 ,数量关系是
(2)如图2将条件“正方形ABCD和正方形BEFG”改为“矩形ABCD和矩形BEFG”其它条件不变,求证:PG=PC;
(3)如图3,若将条件“正方形ABCD和正方形BEFG”改为“菱形ABCD和菱形BEFG”,点A,B,E在同一条直线上,连接DF,P是线段DF的中点,连接PG、PC,且∠ABC=∠BEF=60°,求的值.
当前题号:1 | 题型:解答题 | 难度:0.99
在正方形ABCD中,点P在射线AC上,作点P关于直线CD的对称点Q,作射线BQ交射线DC于点E,连接BP.
(1)当点P在线段AC上时,如图1.
①依题意补全图1;
②若EQ=BP,则∠PBE的度数为    ,并证明;
(2)当点P在线段AC的延长线上时,如图2.若EQ=BP,正方形ABCD的边长为1,请写出求BE长的思路.(可以不写出计算结果)
当前题号:2 | 题型:解答题 | 难度:0.99
如图,在正方形ABCD中,点P是边AB上一点,AB=5BP,点E在对角线AC上,△PEF是直角三角形,PE=PF,AE=2,△APF的面积为12,则BF的长是______.
当前题号:3 | 题型:填空题 | 难度:0.99
如图,正方形ABCO的边OAOC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEFED交线段AB于点GED的延长线交线段OA于点H,连结CHCG
(1)求证:CG平分∠DCB
(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HGOHBG之间的数量关系;
(3)连结BDDAAEEB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.
当前题号:4 | 题型:解答题 | 难度:0.99
如图甲,在△ABC中,∠ACB=90°,AC=4cmBC=3cm,如果点P从点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s,连接PQ,设运动时间为ts)(0<t<4).
(1)当t为何值时,PQBC
(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在,求出此时t的值;若不存在,请说明理由;
(3)如图乙,连接PC,将△PQC沿QC翻折,得到四边形PQPC,当四边形PQPC为菱形时,求t的值.
当前题号:5 | 题型:解答题 | 难度:0.99
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,④AO=OC.其中正确的结论有(  )
A.4个B.1个 C.2个C.3个
当前题号:6 | 题型:单选题 | 难度:0.99
在边长为3的正方形ABCD中,点E、F、G、H分别在AB、BC、CD、DA边上,且满足EB=FC=GD=HA=1,BD分别与HG、HF、EF相交于M、O、N给出以下结论:
①HO=OF;②OF2=ON•OB;③HM=2MG;④SHOM=,其中正确的个数有(  )

A.1B.2C.3D.4
当前题号:7 | 题型:单选题 | 难度:0.99
如图以正方形ABCDB点为坐标原点.BC所在直线为x轴,BA所在直线为y轴,建立直角坐标系.设正方形ABCD的边长为6,顺次连接OAOBOCOD的中点A1B1C1D1,得到正方形A1B1C1D1,再顺次连接OA1OB1OC1OD1的中点得到正方形A2B2C2D2.按以上方法依次得到正方形A1B1C1D1,……AnBnCnDn,(n为不小于1的自然数),设An点的坐标为(xnyn),则xn+yn=______
当前题号:8 | 题型:填空题 | 难度:0.99
(1)问题发现
如图1,点E. F分别在正方形ABCD的边BCCD上,∠EAF=45°,连接EF、则EF=BE+DF,试说明理由;
(2)类比引申
如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E. F分别在边BCCD上,∠EAF=45°,若∠B,∠D都不是直角,则当∠B与∠D满足等量关系   时,仍有EF=BE+DF
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°,猜想BDDEEC满足的等量关系,并写出推理过程。
当前题号:9 | 题型:解答题 | 难度:0.99