- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- + 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知矩形纸片ABCD中,AB=12,BC=16.将矩形纸片ABCD折叠,使点B与点D重合,点A折叠至点E处,GH为折痕,连接BG.
(1)△DGH是等腰三角形吗?请说明你的理由.
(2)求线段AG的长;
(3)求折痕GH的长.
(1)△DGH是等腰三角形吗?请说明你的理由.
(2)求线段AG的长;
(3)求折痕GH的长.

问题情境
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,M
特例探究
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
拓展延伸
(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.
在四边形ABCD中,BA=BC,DC⊥AC,过点D作DE∥AB交BC的延长线于点E,M是边AD的中点,连接MB,M
A. |
(1)如图1,当∠ABC=90°时,写出线段MB与ME的数量关系,位置关系;
(2)如图2,当∠ABC=120°时,试探究线段MB与ME的数量关系,并证明你的结论;
拓展延伸
(3)如图3,当∠ABC=α时,请直接用含α的式子表示线段MB与ME之间的数量关系.

长方形ABCD位于平面直角坐标系中平行移动.
(1)如图1,若AB⊥x轴且点A的坐标(﹣4,4),点C的坐标为(﹣1,﹣2),在边AB上有动点P,过点P作直线PQ交BC边于点Q,并使得BP=2BQ.
①当S△BPQ=
S长方形ABCD时,求P点的坐标.
②在直线CD上是否存在一点M,使得△MPQ是以PQ为直角边的等腰直角三角形?若存在,求出M点坐标:若不存在,请说明理由.
(2)如图2,若AB⊥x轴且A、B关于x轴对称,连接BD、OB、OD,且OB平分∠CBD,求证:BO⊥DO.
(1)如图1,若AB⊥x轴且点A的坐标(﹣4,4),点C的坐标为(﹣1,﹣2),在边AB上有动点P,过点P作直线PQ交BC边于点Q,并使得BP=2BQ.
①当S△BPQ=

②在直线CD上是否存在一点M,使得△MPQ是以PQ为直角边的等腰直角三角形?若存在,求出M点坐标:若不存在,请说明理由.
(2)如图2,若AB⊥x轴且A、B关于x轴对称,连接BD、OB、OD,且OB平分∠CBD,求证:BO⊥DO.

如图,将边长为4的正方形ABCD沿着折痕EF折叠,使点B落在边AD的中点G处.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.
(1)求线段BE的长;
(2)连接BF、GF,求证:BF=GF;
(3)求四边形BCFE的面积.

在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按下图两种方式放置(图中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,若左边图中阴影部分为S1,右边图中阴影部分的面积和为S2.则关于S1,S2的大小关系表述正确的是( )




A.S1>S2 | B.S1<S2 | C.S1=S2 | D.无法确定 |
矩形的一个角的平分线分矩形的一边长为1cm和3cm两部分,则这个矩形的面积是( )
A.4cm² | B.6cm² | C.12cm² | D.4cm²或12cm² |
如图,一块长方形场地ABCD的长AB与宽AD的比为2∶1,DE⊥AC于点E,BF⊥AC于点F,连结BE,DF,则四边形DEBF与长方形ABCD的面积比为__________.

如图,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC、DC于点E、F,连结EF.若EF=5,DF=2,则BE的长为_______.

(1)如图1,点P是平行四边形ABCD对角线AC、BD的交点,若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4则S1、S2、S3、S4的关系为S1=S2=S3=S4.请你说明理由;
(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、P
(3)变式2:如图3,点P是四边形ABCD对角线AC、BD的交点若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,写出S1、S2、S3、S4的关系式.请你说明理由.
(2)变式1:如图2,点P是平行四边形ABCD内一点,连接PA、PB、PC、P
A.若S△PAB=S1,S△PBC=S2,S△PCD=S3,S△PAD=S4,写出S1、S2、S3、S4的关系式; |

如图,把一个正方形剪成四个完全一样的直角三角形,请用这四个直角三角形拼成符合下列要求的一个图形(全部用上,互不重叠且不留空隙),并把你的拼法的草图画出来.
(1)不是矩形和菱形的平行四边形;
(2)不是正方形的菱形;
(3)不是正方形的矩形.
(1)不是矩形和菱形的平行四边形;
(2)不是正方形的菱形;
(3)不是正方形的矩形.
