如图,将矩形ABCD沿对角线AC剪开,再把△ACD沿CA方向平移得到△A1C1D1.

(1)证明:△A1AD1≌△CC1B;
(2)若∠ACB=30°,试问当点C1在线段AC上的什么位置时,四边形ABC1D1是菱形. (直接写出答案)

(1)证明:△A1AD1≌△CC1B;
(2)若∠ACB=30°,试问当点C1在线段AC上的什么位置时,四边形ABC1D1是菱形. (直接写出答案)
已知:如图,四边形ABCD和四边形AECF都是矩形,AE与BC交于点M,CF与AD交于点N.

(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.

(1)求证:△ABM≌△CDN;
(2)矩形ABCD和矩形AECF满足何种关系时,四边形 AMCN是菱形,证明你的结论.
(8分)如图,在△ABC中,CD是AB边上的中线,F是CD的中点,过点C作AB的平行线交BF的延长线于点E,连接AE.

(1)求证:EC=DA;
(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论.

(1)求证:EC=DA;
(2)若AC⊥CB,试判断四边形AECD的形状,并证明你的结论.
如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC为半径,作⊙A,交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交⊙A于点F,连接AF,BF,D
A.![]() (1)求证:△ABC≌△ABF; (2)当∠CAB等于多少度时,四边形ADFE为菱形?请给予证明. |
.写出下列命题的已知、求证,并完成证明过程.
命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.
已知:如图, .
求证: .
证明:
命题:如果平行四边形的一条对角线平分它的一个内角,那么这个平行四边形是菱形.
已知:如图, .
求证: .
证明:

有两张相同的矩形纸片ABCD和A′B′C′D′,其中AB=3,BC=8.

(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;
(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.

(1)若将其中一张矩形纸片ABCD沿着BD折叠,点A落在点E处(如图1),设DE与BC相交于点F,求BF的长;
(2)若将这两张矩形纸片交叉叠放(如图2),试判断四边形MNPQ的形状,并证明.
如图,将平行四边形ABCD纸片沿EF折叠,使点C与点A重合,点D落在点G处,

(1)求证:四边形AECF是菱形;
(2)连接AC,若平行四边形ABCD的面积为8,
,求AC•EF的值.

(1)求证:四边形AECF是菱形;
(2)连接AC,若平行四边形ABCD的面积为8,

(10分)(2015•定州市三模)如图,已知△ABC,按如下步骤作图:
①分别以A,C为圆心,大于
AC的长为半径画弧,两弧交于P,Q两点;
②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.

(1)求证:△AED≌△CFD;
(2)当∠ACF=32°,∠B=46°时,求∠BCE的度数;
(3)求证:四边形AECF是菱形.
①分别以A,C为圆心,大于

②作直线PQ,分别交AB,AC于点E,D,连接CE;
③过C作CF∥AB交PQ于点F,连接AF.

(1)求证:△AED≌△CFD;
(2)当∠ACF=32°,∠B=46°时,求∠BCE的度数;
(3)求证:四边形AECF是菱形.