- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形的性质
- + 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图①,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点H为BD中点,CH的延长线交AB于点F.
(1)求证:CH=EH;
(2)若∠CAB=40°,求∠EHF;
(3)如图②,若△DAE≌△CEH,点Q为CH的中点,连接AQ,求证:AQ∥EH.
(1)求证:CH=EH;
(2)若∠CAB=40°,求∠EHF;
(3)如图②,若△DAE≌△CEH,点Q为CH的中点,连接AQ,求证:AQ∥EH.

如图,∠MON=90°,已知△ABC中,AC=BC=AB=6,△ABC的顶点A、B分别在边OM、ON上,当点B在边ON上运动时,A随之在OM上运动,△ABC的形状始终保持不变,在运动的过程中,点C到点O的距离为整数的点有( )个.


A.5 | B.6 | C.7 | D.8 |
如图,在Rt△ABC中,∠ACB=90°,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.

(1)求证:△ADE≌△CDB;
(2)若BC=1,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.

(1)求证:△ADE≌△CDB;
(2)若BC=1,在AC边上找一点H,使得BH+EH最小,并求出这个最小值.
如图,Rt△ACB中,∠ACB=90°,∠A=60°,CD、CE分别是△ABC的高和中线,下列说法错误的是( )


A.AD =![]() | B.S△CEB = S△ACE |
C.AC、BC的垂直平分线都经过E | D.图中只有一个等腰三角形 |
如图,
,矩形
的顶点
、
分别在边
、
上,当
在边
上运动时,
随之在
上运动,矩形
的形状保持不变,其中
,
,运动过程中,点
到点
的最大距离为______.
















如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.
(1)求证:∠EBD=∠EDB
(2)若∠BED=120°,试判断△BDC的形状.
(1)求证:∠EBD=∠EDB
(2)若∠BED=120°,试判断△BDC的形状.
