- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 矩形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- 矩形与折叠问题
- 直角三角形斜边上的中线
- 矩形的判定与性质综合
- 菱形的性质
- 菱形的判定
- 菱形的判定与性质综合
- 正方形的性质
- 正方形的判定
- 正方形的判定与性质综合
- 四边形综合
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将长方形纸片ABCD(AD>AB)沿AM折叠,使点D落在BC上(与点N重合),如果AD=18.4 cm,∠DAM=40°,求AN的长和∠NAB的度数.

如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,连接A

A. (1)求证:BF=DF; (2)若AB=6,AD=8,求BF的长. |

如图,把一张矩形纸片ABCD按如图
所示方式折叠,使得顶点B和D重合,折痕为EF,若AB=3,BC=5,则重叠部分△DEF的面积为( )



A.3.4 | B.5.1 | C.2.4 | D.1.6 |
如图,矩形ABCD中,AB=4,BC=6,E为AB上一点,将△BCE沿CE翻折至△FCE,EF与AD相交于点G,且AG=FG,则线段AE的长为__________ .

如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为( )


A.2 | B.![]() | C.![]() | D.1 |