- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行四边形的性质
- 平行四边形的判定
- + 平行四边形的判定与性质综合
- 利用平行四边形的判定与性质求解
- 利用平行四边形性质和判定证明
- 平行四边形性质和判定的实际应用
- 三角形中位线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=C

A. (1)求证:四边形ACEF是平行四边形; (2)当∠B的大小满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论; (3)四边形ACEF有可能是正方形吗?为什么? |

如图,
是
的中线,
,
交
于点
,
是
的中点,连接
.
(1)求证:四边形
是平行四边形;
(2)若四边形
的面积为
,请直接写出图中所有面积是
的三角形.









(1)求证:四边形

(2)若四边形




如图,在Rt△ABC中,∠C=90∘,AC=6,BC=8,动点P从点A开始,沿边AC向点C以每秒1个单位长度的速度运动,动点D从点A开始,沿边AB向点B以每秒
个单位长度的速度运动,且恰好能始终保持连结两动点的直线PD⊥AC,动点Q从点C开始,沿边CB向点B以每秒2个单位长度的速度运动,连结PQ.点P,D,Q分别从点A,C同时出发,当其中一点到达端点时,另两个点也随之停止运动,设运动时间为t秒(t≥0).
(1)当t为何值时,四边形BQPD的面积为△ABC面积的
?
(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度。

(1)当t为何值时,四边形BQPD的面积为△ABC面积的

(2)是否存在t的值,使四边形PDBQ为平行四边形?若存在,求出t的值;若不存在,说明理由;
(3)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度。

如图,△ABC的中线BE,CF相交于点G,已知P,Q分别是BG,CG的中点.
(1)求证:四边形EFPQ是平行四边形;
(2)请判断BG与GE的数量关系,并证明.
(1)求证:四边形EFPQ是平行四边形;
(2)请判断BG与GE的数量关系,并证明.

如图,已知BD是△ABC的角平分线,点E.F分别在边AB.BC上,且ED∥BC,EF∥AC,求证:
(1)BE等于CF
(2)∠ABC=60゜,∠ADB=100゜,求∠AEF.
(1)BE等于CF
(2)∠ABC=60゜,∠ADB=100゜,求∠AEF.

如图,在四边形ABCD中,AB∥DC,E是AD中点,EF⊥BC于点F,BC=5,EF=3.
(1)若AB=DC,则四边形ABCD的面积S=__;
(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).
(1)若AB=DC,则四边形ABCD的面积S=__;
(2)若AB>DC,则此时四边形ABCD的面积S′__S(用“>”或“=”或“<”填空).

已知:点D,E分别是△ABC的BC,AC边的中点.
(1)如图①,若AB=10,求DE的长;
(2)如图②,点F是AB边上的一点,FG//AD,交ED的延长线于点

(1)如图①,若AB=10,求DE的长;
(2)如图②,点F是AB边上的一点,FG//AD,交ED的延长线于点
A.求证:AF=DG |
