- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据已知条件判断是否构成平行四边形
- 添一个条件使四边形成为平行四边形
- 数图形中平行四边形的个数
- 求与已知三点组成平行四边形的点的个数
- + 证明四边形是平行四边形
- 全等三角形拼平行四边形问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
下列条件中,能判定一个四边形是平形四边形的是( )
A.一组对边平行,另一组对边相等 | B.一组对边平行,一组对角相等 |
C.一组邻边相等,一组对角相等 | D.一组对边平行,一组对角互补 |
如图,AC是□ ABCD的对角线,延长BA至点E,使AE=AB,连接D
A.![]() (1)求证:四边形ACDE是平行四边形; (2)连接EC交AD于点O,若∠EOD=2∠B,求证:四边形ACDE是矩形. |
如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.

(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.

(1)求证:四边形AMDN是平行四边形;
(2)填空:①当AM的值为 时,四边形AMDN是矩形;②当AM的值为 时,四边形AMDN是菱形.
嘉琪同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图所示的□ABCD,并写出了如下尚不完整的已知和求证.
已知:如图,在四边形ABCD中,BC=AD,AB= .
求证:四边形ABCD是 四边形.
(1)补全已知和求证(在方框中填空);
(2)嘉琪同学想利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.请你按她的想法完成证明过程.
已知:如图,在四边形ABCD中,BC=AD,AB= .
求证:四边形ABCD是 四边形.
(1)补全已知和求证(在方框中填空);
(2)嘉琪同学想利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.请你按她的想法完成证明过程.

如图,平行四边形
,对角线
交于点
,点
分别是
的中点,连接
交
于
,连接

(1)证明:四边形
是平行四边形
(2)点
是哪些线段的中点,写出结论,并选择一组给出证明.










(1)证明:四边形

(2)点

如图所示,在等边三角形ABC中,BC=8cm,射线AG∥BC,点E从点A出
发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s)
(1)填空:当t为 s时,△ABF是直角三角形;
(2)连接EF,当EF经过AC边的中点D时,四边形AFCE是否是特殊四边形?请证明你的结论.

(1)填空:当t为 s时,△ABF是直角三角形;
(2)连接EF,当EF经过AC边的中点D时,四边形AFCE是否是特殊四边形?请证明你的结论.

如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于

A. (1)求点B的坐标; (2)求证:四边形ABCE是平行四边形; (3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长. |
