- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 根据已知条件判断是否构成平行四边形
- 添一个条件使四边形成为平行四边形
- 数图形中平行四边形的个数
- 求与已知三点组成平行四边形的点的个数
- + 证明四边形是平行四边形
- 全等三角形拼平行四边形问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图所示,在梯形ABCD中,AD∥BC,E,F,M,N分别为AD,AB,BC,CD的中点,连接EF,FM,MN,EN,你能肯定四边形EFMN是平行四边形吗?为什么?若将梯形ABCD改变成等腰梯形,其他条件不变,你又会得到EFMN是什么四边形呢?为什么?

在下列命题中,正确的是



A.对角线相等的四边形是平行四边形 |
B.有一个角是直角的四边形是矩形 |
C.有一组邻边相等的平行四边形是菱形 |
D.对角线互相垂直平分的四边形是正方形 |
如图,在
中,
,点
在对角线
上,点
从点
出发以每秒1个单位的速度向点
运动,同时点
从点
出发以相同速度向点
运动,到端点时运动停止,运动时间为
秒.

(1)求证;四边形
为平行四边形;
(2)求
为何值时,四边形
为矩形.












(1)求证;四边形

(2)求


平行四边形
中,对角线
,
相交于点
,若
、
是
两动点,
、
分别从
、
两点同时以2cm/s的相同的速度向
、
运动。
(1)四边形
是平行四边形吗?说明你的理由。
(2)若
cm,
cm,当运动时间
为多少时,以
、
、
、
为顶点的四边形为矩形。













(1)四边形

(2)若








四边形ABCD 中,AB=3,BC=4,E,F 是对角线 AC上的两个动点,分别从 A,C 同时出发,相向而行,速度均为 1cm/s,运动时间为 t 秒,当其中一个动点到达后就停止运动.
(1)若 G,H 分别是 AB,DC 中点,求证:四边形 EGFH 始终是平行四边形.
(2)在(1)条件下,当 t 为何值时,四边形 EGFH 为矩形.
(3)若 G,H 分别是折线 A﹣B﹣C,C﹣D﹣A 上的动点,与 E,F 相同的速度同时出发,当 t 为何值时,四边形 EGFH 为菱形.
(1)若 G,H 分别是 AB,DC 中点,求证:四边形 EGFH 始终是平行四边形.
(2)在(1)条件下,当 t 为何值时,四边形 EGFH 为矩形.
(3)若 G,H 分别是折线 A﹣B﹣C,C﹣D﹣A 上的动点,与 E,F 相同的速度同时出发,当 t 为何值时,四边形 EGFH 为菱形.
