如图,点O是线段AB上的一点,OA=OC,OD平分∠AOC交AC于点D,OF平分∠COB,CF⊥OF于点
A.
(1)求证:四边形CDOF是矩形;
(2)当∠AOC多少度时,四边形CDOF是正方形?并说明理由.
当前题号:1 | 题型:解答题 | 难度:0.99
已知四边形ABCD是平行四边形,下列条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD.选两个作为补充条件,使得四边形ABCD是正方形,其中错误的选法是(    )
A.①②B.②③C.①③    D. ③④
当前题号:2 | 题型:单选题 | 难度:0.99
如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=8,DF=4,则菱形ABCD的边长为多少?
当前题号:3 | 题型:解答题 | 难度:0.99
如图,在△ABC中,点OAC边上(端点除外)的一个动点,过点O作直线MNB
A.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连结AEAF.那么当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

当前题号:4 | 题型:解答题 | 难度:0.99
已知在等腰△ABC中,ABAC,分别延长BACADE点,使DAABEACA,则四边形BCDE是(  )
A.任意四边形B.矩形C.菱形D.正方形
当前题号:5 | 题型:单选题 | 难度:0.99
如图,在中,边上的中线,过点,过点的平行线与的延长线交于点,连接

)求证:四边形为菱形;
)若四边形的面积为,求的长.
当前题号:6 | 题型:解答题 | 难度:0.99
阅读下面材料:在数学课上,老师提出如下问题:
已知:
求作:矩形

小敏的作法如下:
①作线段的垂直平分线交于点
②连接并延长,在延长线上截取
③连接
则四边形即为所求.

老师说:“小敏的作法正确.”
请回答:小敏的作图依据是__________.
当前题号:7 | 题型:填空题 | 难度:0.99
在平行四边形中,若再增加一个条件__________,使平行四边形能成为矩形(填写一个你认为正确的即可).
当前题号:8 | 题型:填空题 | 难度:0.99
在四边形中,能判定这个四边形是正方形的条件是()
A.对角线相等,对边平行且相等B.一组对边平行,一组对角相等
C.对角线互相平分且相等,对角线互相垂直D.一组邻边相等,对角线互相平分
当前题号:9 | 题型:单选题 | 难度:0.99
已知四边形ABCD中,分别是的中点,则四边形EFGH是()
A.菱形B.矩形C.正方形D.梯形
当前题号:10 | 题型:单选题 | 难度:0.99