- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当动点Q到达点D时另一个动点P也随之停止运动.设运动的时间为t(秒).

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?
下列四个命题:①一组对边平行,另一组对边相等的四边形是等腰梯形;②对角线互相垂直且相等的四边形是正方形;③顺次连接菱形各边中点所得四边形是矩形;④等腰三角形腰上的高与中线重合.其中真命题有
A.1个 | B.2个 | C.3个 | D.4个 |
如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点P,Q分别从A,B同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为ts.

(1)设点Q的运动速度为
cm/s.
①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为acm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.

(1)设点Q的运动速度为

①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为acm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.
如图,在四边形ABCD中,AD//BC.沿直线AD翻折四边形ABCD后可得四边形ADC′B′,那么四边形BCC′B′一定是

A.正方形 B.菱形 C.矩形 D.梯形

A.正方形 B.菱形 C.矩形 D.梯形
如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.

如已知:线段AB,BC,∠ABC =" 90°." 求作:矩形ABCD.
以下是甲、乙两同学的作业:

对于两人的作业,下列说法正确的是
以下是甲、乙两同学的作业:

对于两人的作业,下列说法正确的是
A.两人都对 | B.两人都不对 |
C.甲对,乙不对 D.甲不对,乙对 |
如图,在等边三角形ABC中,BC=6
,射线AG∥BC,点E从点A出发沿射线AG以
的速度运动,同时点F从点B出发沿射线BC以
的速度运动,设运动时间为

(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF
(2)填空:
①当
为 s时,四边形ACFE是菱形;
②当
为 s时,以A,F,C,E为顶点的四边形是直角梯形.





(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF
(2)填空:
①当

②当

矩形ABCD中,AB=4,AD=3,P,Q是对角线BD上不重合的两点,点P关于直线AD,AB的对称点分别是点E、F,点Q关于直线BC、CD的对称点分别是点G、H.若由点E、F、G、H构成的四边形恰好为菱形,则PQ的长为 .
如图,在等腰梯形ABCD中,已知AD//BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
(1)求证:BD=DE.
(2)若AC⊥BD,AD=3,SABCD=16,求AB的长.
