- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在
中,
,
为平面内一动点,
,
,其中a,b为常数,且
.将
沿射线
方向平移,得到
,点A、B、D的对应点分别为点F、C、E.连接
.
(1)如图1,若
在
内部,请在图1中画出
;
(2)在(1)的条件下,若
,求
的长(用含
的式子表示);
(3)若
,当线段
的长度最大时,则
的大小为__________;当线段
的长度最小时,则
的大小为_______________(用含
的式子表示).










(1)如图1,若



(2)在(1)的条件下,若



(3)若







如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN= ;
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.
(1)①∠MPN= ;
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

张大爷家有一块梯形形状的稻田(如图),已知:上底AD=400米,下底BC=600米,高h=300米,张大爷准备把这块稻田平均分给两个儿子(面积相等).
(1)分割方法有无数种,请你帮助张大爷设计两种不同的分割方案,在图1、图2中分别画出来,并简单说明理由;
(2)如果用竹篱笆将分给两个儿子的稻田隔开,问:分割线在什么位置时,所用篱笆长度最短?请在图3中画出来,并求出此时篱笆的最短长度.
(1)分割方法有无数种,请你帮助张大爷设计两种不同的分割方案,在图1、图2中分别画出来,并简单说明理由;
(2)如果用竹篱笆将分给两个儿子的稻田隔开,问:分割线在什么位置时,所用篱笆长度最短?请在图3中画出来,并求出此时篱笆的最短长度.

如图,四边形ABCD为矩形,四边形AEDF为菱形.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.
(1)求证:△ABE≌△DCE;
(2)试探究:当矩形ABCD边长满足什么关系时,菱形AEDF为正方形?请说明理由.

如图,在直角梯形ABCD中,AD//BC,ÐABC=90°,BD ^DC,BD=DC,CE平分ÐBCD,交AB于点E,交BD于点H,EN//DC交BD于点N.下列结论:
①BH=DH;②CH=(
+1)EH;③
=
;
其中正确的是

①BH=DH;②CH=(



其中正确的是

A.①②③ | B.只有②③ | C.只有② | D.只有③ |
在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=A D.连接DE交对角线AC于H,连接BH.下列结论正确的是 .(填番号)
①AC⊥DE;②
;③CD=2DH;④
.
①AC⊥DE;②



我们知道平行四边形有很多性质.
现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)
ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.
结论1:B′D∥AC;
结论2:△AB′C与
ABCD重叠部分的图形是等腰三角形.
……
请利用图1证明结论1或结论2(只需证明一个结论).
(应用与探究)在
ABCD中,已知∠B=30°,将△ABC沿AC翻折至△AB′C,连结B′D.
(1)如图1,若
,则∠ACB= °,BC= ;
(2)如图2,
,BC=1,AB′与边CD相交于点E,求△AEC的面积;
(3)已知
,当BC长为多少时,是△AB′D直角三角形?
现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明)

结论1:B′D∥AC;
结论2:△AB′C与

……
请利用图1证明结论1或结论2(只需证明一个结论).
(应用与探究)在

(1)如图1,若

(2)如图2,

(3)已知


请用直尺和圆规在所给的两个矩形中各作一个不为正方形的菱形,且菱形的四个顶点都在矩形的边上,面积相同的图形视为同一种. (保留作图痕迹).


