- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形ABCD中,点E是AD上的点,点F是BC的延长线上一点,CF=DE,连结BE和EF,EF与CD交于点G,且∠FBE=∠FE

A. (1)过点F作FH⊥BE于点H,证明: ![]() (2)猜想:BE、AE、EF之间的数量关系,并证明你的结论; (3)若DG=2,求AE值. |

如图,正方形ABCD的面积为4,对角线交于点O,点O是正方形A1B1C1O的一个顶点,如果这两个正方形全等,正方形A1B1C1O绕点O旋转.
(1)求两个正方形重叠部分的面积;
(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.
(1)求两个正方形重叠部分的面积;
(2)若正方形A1B1C1O旋转到B1在DB的延长线时,求A与C1的距离.

如图,由 12 个形状、大小完全相同的小矩形组成一个大的矩形网格,小矩形的顶点称为这个矩形网格的格点.已知这个大矩形网格的宽为 4,△ABC的顶点都在格点.
求每个小矩形的长与宽;
在矩形网格中找出所有的格点 E,使△ABE为直角三角形;
(描出相应的点,并分别用 E1,E2,…表示)
求 sin∠ACB的值.
求每个小矩形的长与宽;
在矩形网格中找出所有的格点 E,使△ABE为直角三角形;
(描出相应的点,并分别用 E1,E2,…表示)
求 sin∠ACB的值.

如图,正方形ABCD的边长为12,点E是射线BC上的一个动点,连接AE并延长,交射线DC于点F,将△ABE沿直线AE翻折,点B落在点B'处.
(1)当
=1时,如图1,延长A B',交CD于点M,①CF的长为 ;②求证:AM=FM.
(2)当点B'恰好落在对角线AC上时,如图2,此时CF的长为 ;
= .
(3)当
=3时,求∠DA B'的正弦值.
(1)当

(2)当点B'恰好落在对角线AC上时,如图2,此时CF的长为 ;

(3)当

