- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
将一根长度为16cm自然伸直的弹性皮筋AB两端固定在水平的桌面上,然后把中点C竖直向上拉升6cm至D点(如图),则该弹性皮筋被拉长了( )


A.2 cm | B.4 cm | C.6 cm | D.8 cm |
已知菱形ABCD边长为6,E是BC的中点,AE、BD相交于点P.
(1)如图1,当∠ABC=90°时,求BP的长;
(2)如图2,当∠ABC角度在改变时,BP的中垂线与边BC的交点F的位置是否发生变化?如果不变,请求出BF的长;如果改变,请说明理由;
(3)当∠ABC从90°逐步减少到30°的过程中,求P点经过路线长.

(1)如图1,当∠ABC=90°时,求BP的长;
(2)如图2,当∠ABC角度在改变时,BP的中垂线与边BC的交点F的位置是否发生变化?如果不变,请求出BF的长;如果改变,请说明理由;
(3)当∠ABC从90°逐步减少到30°的过程中,求P点经过路线长.


如图,正方形ABCD的边长为3,将等腰直角三角板的45°角的顶点放在B处,两边与CD及其延长线交于E、F,若CE=1,则BF的长为( )
A.![]() | B.![]() | C.![]() | D.![]() |
如图,在
中,
,点
在
上,
,过点
作
,垂足为
,
经过
,
,
三点.

Ⅰ 求证:
是
的直径;
Ⅱ 判断
与
的位置关系,并加以证明;
Ⅲ 若
的半径为
,
,则
= .(只填结果)













Ⅰ 求证:


Ⅱ 判断


Ⅲ 若




如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为
的中点,BE⊥CD垂足为E.

(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=
,求OE的长度.


(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB=
