- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
合肥地铁一号线与地铁二号线在A站交汇,且两条地铁线互相垂直如图所示,学校P到地铁一号线B站的距离PB=2km,到地铁二号线C站的距离PC为4km,PB与一号线的夹角为30°,PC与二号线的夹角为60°.求学校P到A站的距离(结果保留根号)

如图,矩形ABCD中,AB=4,AD=6,点E为BC上一点,将△ABE沿AE折叠得到△AEF,点H为CD上一点,将△CEH沿EH折叠得到△EHG,且F落在线段EG上,当GF=GH时,则BE的长为_____.

如图,在直角坐标系中,
、
两点的坐标分别为
和
,将一根新皮筋两端固定在
、
两点处,然后用手勾住橡皮筋向右上方拉升,使橡皮筋与坐标轴围成一个矩形
,若反比例函数
的图像恰好经过点
,则
的值______.











如图,将长方形ABCD沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.
(1)试判断△BDE的形状,并说明理由;
(2)若AB=4,AD=8,求△BDE的面积.

如图1,在长方形
中,
,有一只蚂蚁
在点
处开始以每秒1个单位的速度沿
边向点
爬行,另一只蚂蚁
从点
以每秒2个单位的速度沿
边向点
爬行,蚂蚁的大小忽略不计,如果
、
同时出发,设运动时间为
s.

(1)当
时,求
的面积;
(2)当
时,试说明
是直角二角形;
(3)当运动3s时,
点停止运动,
点以原速立即向
点返回,在返回的过程中,是否存在点
,使得
平分
?若存在,求出点
运动的时间,若不存在请说明理由.














(1)当


(2)当


(3)当运动3s时,






