- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若OF的长为
,则△CEF的周长为______.


如图,在长方形ABCD中,AB=6,AD=8,若P是AC上的一个动点,则AP+BP+CP的最小值是( )


A.14.8 | B.15 | C.15.2 | D.16 |
一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其它两个顶点在矩形的边上,则剪下的等腰三角形的面积为 ( )平方厘米.
A.50 | B.50或40 | C.50或40或30 | D.50或30或20 |
如图,在平面直角坐标系中有一个长方形ABCO,C点在x轴上,A点在y轴上,B点坐标(8,4),将长方形沿EF折叠,使点B落到原点O处,点C落到点D处,则OF的长度是_____.

如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=3,BC=9.点D对应点是G.

(1)求BE长;
(2)求EF长.

(1)求BE长;
(2)求EF长.