- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
“低碳环保,你我同行”.今年合肥市区的增设的“小黄车”、“摩拜单车”等公共自行车
给市民出行带来了极大的方便.图①是某种公共自行车的实物图,图②是该种公共自行车的
车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,
座杆CE=15cm,且∠EAB=75°.求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°
≈0.26,tan75°≈3.73)

给市民出行带来了极大的方便.图①是某种公共自行车的实物图,图②是该种公共自行车的
车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,
座杆CE=15cm,且∠EAB=75°.求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°
≈0.26,tan75°≈3.73)


如图,
是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为
上一动点,当BP经过弦AD的中点E时,四边形ACBE的周长为_____.(结果用根号表示)



图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.请你在图1、图2中各画出一个以A,B为顶点的直角三角形,使所画两直角三角形的形状不同(另一顶点为小正方形的顶点).

计算:
①已知:a+
=1+
,求a2+
的值.
②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.
①已知:a+



②如图,四边形ABCD中∠A=60°,∠B=∠D=90°,AB=2,CD=1,求四边形ABCD的面积.

如图,Rt△ABC中,∠BCA=90°,AB=
,AC=2,D为斜边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E、F,连接EF,则EF的最小值是_____ .

