- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
直角三角形三条边的比是3∶4∶5.则这个三角形三条边上的高的比是( )
A.15∶12∶8 | B.15∶20∶12 | C.12∶15∶20 | D.20∶15∶12 |
如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点.
(1)在图①中以格点为顶点画一个三角形,使三角形三边长分别为2,
,
;
(2)在图②中以格点为顶点画一个面积为10的正方形;
(3)观察图③中带阴影的图形,请你将它适当剪开,重新拼成一个正方形(要求:在图③中用虚线作出,并用文字说明剪拼方法).
(1)在图①中以格点为顶点画一个三角形,使三角形三边长分别为2,


(2)在图②中以格点为顶点画一个面积为10的正方形;
(3)观察图③中带阴影的图形,请你将它适当剪开,重新拼成一个正方形(要求:在图③中用虚线作出,并用文字说明剪拼方法).

如图的方格纸中,小正方形的边长为1,点A、B是格点.在图中找出格点C,连结CA、CB,使△ABC为轴对称图形,这样的格点数有( )


A.5个 | B.6个 | C.7个 | D.8个 |
将三个大小不同的正方形如图放置,顶点处两两相接,若正方形A的边长为4,正方形C的边长为3,则正方形B的边长为( )


A.25 | B.12 | C.7 | D.5 |