- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将一边长为a的正方形(最中间的小正方形)与四块边长为b的正方形(其中b>a)拼接在一起,则四边形ABCD的面积为( )


A.b2+(b﹣a)2 | B.b2+a2 | C.(b+a)2 | D.a2+2ab |
已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:

(1)在第一张表格中,作边长为
的正方形;
(2)在第二张表格中,作一个三条边长分别为
,
,
的三角形.

(1)在第一张表格中,作边长为

(2)在第二张表格中,作一个三条边长分别为



如图,在边长为1的小正方形组成的网格中,点A、B、C、D都在这些小正方形的顶点上,AB,CD都交于O,则sin∠AOD=_____.

如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.

(1)在图(1)中,画一个三角形,使它的三边长都是有理数;
(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;
(3)在图(3)中,画一个正方形,使它的面积是10.

(1)在图(1)中,画一个三角形,使它的三边长都是有理数;
(2)在图(2)中,画一个直角三角形,使它们的三边长都是无理数;
(3)在图(3)中,画一个正方形,使它的面积是10.
如图,圆柱的底面周长为6cm,AC是底面圆的直径,高BC=3cm,点P是内壁BC上一点且PC=
BC.一只蚂蚁从A点出发沿着圆柱体的表面爬行到点P的最短距离是( )



A.(4+![]() | B.5cm C.8cm | C.7cm |
如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm、3 dm和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是 dm.

用两块完全相同的直角三角形纸片,拼成一个四边形,若直角三角形两直角边分别为3,4,则拼成的四边形中,较长的对角线的长度可能为_____.
如图,有一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则CD等于( )


A.![]() | B.![]() | C.![]() | D.![]() |
如图,在长方形ABCD中,AB=8,BC=4,将长方形ABCD沿AC折叠,得到△ACD′,CD′与AB交于点F.

(1)求AF的长;
(2)重叠部分△AFC的面积为多少?

(1)求AF的长;
(2)重叠部分△AFC的面积为多少?