如图1,在
中,
,点
分别在边
上,
,连接
,点
分别为
的中点.

(1)观察猜想
图1中,线段
与
的数量关系是________,
的度数是________;
(2)探究证明
把
绕点
逆时针方向旋转到图2的位置,连接
,判断
的形状,并说明理由;
(3)拓展延伸
把
绕点
在平面内自由旋转,若
,请直接写出
面积的取值范围.









(1)观察猜想
图1中,线段



(2)探究证明
把




(3)拓展延伸
把




如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P
(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________
(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明
(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________
(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________
(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明
(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________

如图,在四边形ABCD中,∠ABC=∠ADC=90°,AB=AD,E是AC的中点.
(1)求证:∠EBD=∠EDB
(2)若∠BED=120°,试判断△BDC的形状.
(1)求证:∠EBD=∠EDB
(2)若∠BED=120°,试判断△BDC的形状.

在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作▱ECF

A. (1)如图1,证明▱ECFG为菱形; (2)如图2,若∠ABC=120°,连接BG、CG,并求出∠BDG的度数: (3)如图3,若∠ABC=90°,AB=6,AD=8,M是EF的中点,求DM的长. |

如图,△ABC是边长为3的等边三角形,P是AB边上的一个动点,由A向B运动(P不与A、B重合),Q是BC延长线上一动点,与点P同时以相同的速度由C向BC延长线方向运动(Q不与C重合),

(1)当∠BPQ=90°时,求AP的长;
(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.

(1)当∠BPQ=90°时,求AP的长;
(2)过P作PE⊥AC于点E,连结PQ交AC于D,在点P、Q的运动过程中,线段DE的长是否发生变化?若不变,求出DE的长度;若变化,求出变化范围.
如图,已知等边三角形
中,点
,
,
分别为各边中点,
为直线
上一动点,
为等边三角形(点
的位置改变时,
也随之整体移动).

(1)如图1,当点
在点
左侧时,请判断
与
有怎样的数量关系?请直接写出结论,不必证明或说明理由;
(2)如图2,当点
在
上时,其它条件不变,(1)的结论中
与
的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点
在点
右侧时,请你在图3中画出相应的图形,并判断(1)的结论中
与
的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.(提示:连接
、
、
.可证
、
、
、
均为等边三角形).










(1)如图1,当点




(2)如图2,当点




(3)若点










