已知:如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P.
(1)求证:△ABE≌△CAD;
(2)若PQ=2,BE=5,求PE的值.
(1)求证:△ABE≌△CAD;
(2)若PQ=2,BE=5,求PE的值.

在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:

(1)如图1,在爬行过程中,CD和BE始终相等吗?
(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,DF始终等于EF是否正确?

(1)如图1,在爬行过程中,CD和BE始终相等吗?
(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;
(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,DF始终等于EF是否正确?
如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.

(1)若∠BAN=15°,求∠N;
(2)若AE=CF,求证:2AG=AF.

(1)若∠BAN=15°,求∠N;
(2)若AE=CF,求证:2AG=AF.
已知:如图,在等边△ABC中,点D、E分别在边AC、BC上,BD与AE交于点F,CD=B
A.![]() (1)求证:BD=AE;(2)求证:∠AFD=60°. |
已知,
、
均为等边三角形,点
是
内的点
(1)如图①,说明
的理由;

(2)如图②,当点
在线段
上时,求
的度数;

(3)当
为等腰直角三角形时,
________度(直接写出客案).




(1)如图①,说明


(2)如图②,当点




(3)当


如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q.若PQ=4,PE=1,则AD的长为__________。

如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.

探究:在下面两种条件下,线段BM、MN、NC之间的关系,并加以证明.
①AN=NC(如图②); ②DM//AC(如图③).
思考:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.


探究:在下面两种条件下,线段BM、MN、NC之间的关系,并加以证明.
①AN=NC(如图②); ②DM//AC(如图③).
思考:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.