已知△ABC是等边三角形,点D,E分别在直线BC,AC上.

(1)如图1,当BD=CE时,连接AD与BE交于点P,则线段AD与BE的数量关系是____________;∠APE的度数是_______________;
(2)如图2,若“BD=CE”不变,AD与EB的延长线交于点P,那么(1)中的两个结论是否仍然成立?请说明理由.
(3)如图3,若AE=BD,连接DE与AB边交于点M,求证:点M是DE的中点.

(1)如图1,当BD=CE时,连接AD与BE交于点P,则线段AD与BE的数量关系是____________;∠APE的度数是_______________;
(2)如图2,若“BD=CE”不变,AD与EB的延长线交于点P,那么(1)中的两个结论是否仍然成立?请说明理由.
(3)如图3,若AE=BD,连接DE与AB边交于点M,求证:点M是DE的中点.
(问题解决)
(1)如图①,在等边△ABC中,点M是BC边上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.试判断∠ABC与∠ACN的大小关系.并说明理由.
(类比探究)
(2)如图②在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论还成立吗?请说明理由.
(拓展延伸)
(3)若点M是CB延长线上的任意一点(不含端点B),请直接写出∠ACN的度数.
(1)如图①,在等边△ABC中,点M是BC边上的任意一点(不含端点B,C),连结AM,以AM为边作等边△AMN,连结CN.试判断∠ABC与∠ACN的大小关系.并说明理由.
(类比探究)
(2)如图②在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论还成立吗?请说明理由.
(拓展延伸)
(3)若点M是CB延长线上的任意一点(不含端点B),请直接写出∠ACN的度数.

如图,已知等边
的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线
是经过点P的一条直线,把
沿直线
折叠,点B的对应点是点
.

(1)如图1,当
时,若点
恰好在AC边上,则
的长度为 ;
(2)如图2,当
时,若直线
,则
的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线
始终垂直于AC,
的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当
时,在直线
变化过程中,求
面积的最大值.






(1)如图1,当



(2)如图2,当



(3)如图3,点P在AB边上运动过程中,若直线


(4)当



如图1,点P,Q分别是等边△ABC边AB,BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ,CP交于点M.
(1)求证:△ABQ
△CAP;
(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC= 度.(直接填写度数)
(1)求证:△ABQ

(2)如图1,当点P,Q分别在AB,BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P,Q在分别运动到点B和点C后,继续在射线AB,BC上运动,直线AQ,CP交点为M,则∠QMC= 度.(直接填写度数)

如图所示,在平面直角坐标系中,
点坐标
,且
,
满足

(1)如图(1)当
为等腰直角三角形时;
①点
坐标为__________;点
坐标为__________.
②在(1)的条件下,分别以
和
为边作等边
和等边
,连结
,求
的度数.
(2)如图(2),过点
作
轴于点
,点
为
轴正半轴上一点,
为
延长线上一点,以
为直角边作等腰直角三角形
,
,过点
作
轴交
于点
,连结
,求证:
.






(1)如图(1)当

①点


②在(1)的条件下,分别以






(2)如图(2),过点















