刷题首页
题库
初中数学
题干
如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D为顶点作一个60°角,角的两边分别交AB、AC边于M、N两点,连接MN.
探究:在下面两种条件下,线段BM、MN、NC之间的关系,并加以证明.
①AN=NC(如图②); ②DM//AC(如图③).
思考:若点M、N分别是射线AB、CA上的点,其它条件不变,再探线段BM、MN、NC之间的关系,在图④中画出图形,并说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-10-23 11:01:49
答案(点此获取答案解析)
同类题1
建立模型:
如图1,等腰Rt△
ABC
中,∠
ABC
=90°,
CB
=
BA
,直线
ED
经过点
B
,过
A
作
AD
⊥
ED
于
D
,过
C
作
CE
⊥
ED
于
E
.则易证△
ADB
≌△
BE
A.这个模型我们称之为“一线三垂直”.它可以把倾斜的线段
AB
和直角∠
ABC
转化为横平竖直的线段和直角,所以在平面直角坐标系中被大量使用.
模型应用:
(1)如图2,点
A
(0,4),点
B
(3,0),△
ABC
是等腰直角三角形.
①若∠
ABC
=90°,且点
C
在第一象限,求点
C
的坐标;
②若
AB
为直角边,求点
C
的坐标;
(2)如图3,长方形
MFNO
,
O
为坐标原点,
F
的坐标为(8,6),
M
、
N
分别在坐标轴上,
P
是线段
NF
上动点,设
PN
=
n
,已知点
G
在第一象限,且是直线
y
=2
x
一6上的一点,若△
MPG
是以
G
为直角顶点的等腰直角三角形,请直接写出点
G
的坐标.
同类题2
如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E。
(1)①求证图1中△ADC≌△CEB;②证明DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由)。
同类题3
已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE=α,直线AE与BD交于点
A.
(1)如图1所示,
①求证AE= BD
②求∠AFB (用含α的代数式表示)
(2)将图1中的△ACD绕点C顺时针旋转某个角度(交点F至少在BD、AE中的一条线段上),得到如图2所示的图形,若∠AFB= 150°,请直接写出此时对应的α的大小(不用证明)
同类题4
已知,
、
均为等边三角形,点
是
内的点
(1)如图①,说明
的理由;
(2)如图②,当点
在线段
上时,求
的度数;
(3)当
为等腰直角三角形时,
________度(直接写出客案).
同类题5
以锐角△
ABC
的边
AC
、
AB
为边向外作正方形
ACDE
和正方形
ABGF
,连结
BE
、
CF
.
(1)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.
(2)试探索
BE
和
CF
有什么数量关系和位置关系?并说明理由.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形的辅助线问题
全等三角形——旋转模型