将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD,转动这个四边形可以使它的形状改变. 当∠B=60°时,如图(1),测得AC=2;当∠B=90°时,如图(2),此时AC的长为( )


A.![]() | B.2 | C.![]() | D.![]() |
如图,等腰三角形PEF中,PE=PF,点O在EF边上(异于点E,F),点Q是PO延长线上一点,若△EFQ为等腰三角形,则称点Q为△PEF的“同类点”.

(1)如图,BG平分∠MBN,过射线BM上的点A作AD∥BN,交射线BG于点D,点O为BD上一点,连接AO并延长交射线BN于点C,若∠BAD=100°,∠BCD=70°,求证:点C是△ABD的“同类点”;

(2)如图③,在5×5的正方形网格图上有一个△ABC,点A,B,C均在格点上,在给出的网格图上有一个格点D,使得点D为△ABC的“同类点”,则这样的点D共有__________个;

(3)凸四边形ABCD中,∠ABC=110°,DA=AB=BC,对角线AC,BD交于点O,且BD≠CD,若点C为△ABD的“同类点”,请直接写出满足条件的∠ADC的度数.

(1)如图,BG平分∠MBN,过射线BM上的点A作AD∥BN,交射线BG于点D,点O为BD上一点,连接AO并延长交射线BN于点C,若∠BAD=100°,∠BCD=70°,求证:点C是△ABD的“同类点”;

(2)如图③,在5×5的正方形网格图上有一个△ABC,点A,B,C均在格点上,在给出的网格图上有一个格点D,使得点D为△ABC的“同类点”,则这样的点D共有__________个;

(3)凸四边形ABCD中,∠ABC=110°,DA=AB=BC,对角线AC,BD交于点O,且BD≠CD,若点C为△ABD的“同类点”,请直接写出满足条件的∠ADC的度数.
如图,∠AOB=30°,P是∠AOB内的一点,且OP=4cm,C、D分别是P关于OA、OB的对称点,连结CD、PM、PN,则△PMN的周长为________.

如图,已知∠MON=30°,点A1、A2、A3……在射线ON上,点B1、B2、B3……在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4……均为等边三角形,且OA1=1.

(1)分别求出△A1B1A2、△A3B3A4的边长;
(2)求△A7B7A8的周长(直接写出结果).

(1)分别求出△A1B1A2、△A3B3A4的边长;
(2)求△A7B7A8的周长(直接写出结果).
已知:等边三角形ABC
(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;

(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD

下列条件不能得到等边三角形的是( )
A.有两个内角是![]() | B.有一个角是![]() |
C.腰和底相等的等腰三角形 | D.有两个角相等的等腰三角形 |
下列条件①有一个角为60°的三角形;②三个外角都相等的三角形;③一边上的高与中线重合的三角形;④有一个角为60°的等腰三角形.能判定三角形为等边三角形的有( )
A.1个 | B.2个 | C.3个 | D.4个 |
已知,△ABC是等边三角形,如图①,点D、E分别在射线BA、BC上,且AD=CE,求证:△BDE是等边三角形;
(2)如图②,点D在BA边上,点E在射线BC上,AD=CE,连接DE交AC于点F,请问DF与EF的数量关系是什么?并说明理由.

(2)如图②,点D在BA边上,点E在射线BC上,AD=CE,连接DE交AC于点F,请问DF与EF的数量关系是什么?并说明理由.