如图,是一个等边三角形木框,甲虫
在边框
上爬行(
,
端点除外),设甲虫
到另外两边的距离之和为
,等边三角形
的高为
,则
与
的大小关系是( )












A.![]() | B.![]() | C.![]() | D.无法确定 |
已知等边△ABC的边长为4cm,点P,Q分别是直线AB,BC上的动点.

(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.
①当t=2时,求∠AQP的度数.
②当t为何值时△PBQ是直角三角形?
(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.

(1)如图1,当点P从顶点A沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为lcm/s,到达终点时停止运动.设它们的运动时间为t秒,连接AQ,PQ.
①当t=2时,求∠AQP的度数.
②当t为何值时△PBQ是直角三角形?
(2)如图2,当点P在BA的延长线上,Q在BC上,若PQ=PC,请判断AP,CQ和AC之间的数量关系,并说明理由.
已知:点C为∠AOB内一点.
(1)在OA上求作点D,在OB上求作点E,使△CDE的周长最小,请画出图形;(不写做法,保留作图痕迹)
(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.
(1)在OA上求作点D,在OB上求作点E,使△CDE的周长最小,请画出图形;(不写做法,保留作图痕迹)
(2)在(1)的条件下,若∠AOB=30°,OC=10,求△CDE周长的最小值.

如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是( )


A.4个 | B.3个 | C.2个 | D.1个 |
(1)如图①,已知线段
,以
为一边作等边
(尺规作图,保留作图痕迹,不写作法);
(2)如图②,已知
,
,
,分别以
为边作等边
和等边
,连接
,求
的最大值;
(3)如图③,已知
,
,
,
,
为
内部一点,连接
,求出
的最小值.



(2)如图②,已知








(3)如图③,已知









如图,在等边△ABC 中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接EC 并延长,交射线AD 于点F .

(1)补全图形;(2)求∠AFE 的度数;(3)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.

(1)补全图形;(2)求∠AFE 的度数;(3)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.
如图,已知C为线段AB上的一点,△ACM和△CBN都是等边三角形,AN和CM相交于F点,BM和CN交于E点.求证:△CEF是等边三角形.

如图,小江同学把三角尺含有
角的一端以不同的方向穿入进另一把三角尺(含有
角)的孔洞中,已知孔洞的最长边为
,则三角尺穿过孔洞部分的最大面积为( )





A.![]() | B.![]() | C.![]() | D.![]() |