- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- + 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在等边
中,点
在
边上,点
在
的延长线上且
.

(1)如图1,若点
为
中点,求
的度数;
(2)如图2,若点
为
上任意一点,求证
.
(3)如图3,若点
为
上任意一点,点
关于直线
的对称点为点
,连接
,请判断
的形状,并说明理由.







(1)如图1,若点



(2)如图2,若点



(3)如图3,若点







在△ABC中,AB=AC,∠BAC=120°,M为BC边上一动点(M不与B、C重合)
(1)如图1,若∠MAC=45°,求
;
(2)如图2,将CM绕点C顺时针旋转60°至CN,连接BN,T为BN的中点,连接AT.
①求证:AM=2AT;
②当AB=AC=2时,直接写出CM+4AT的最小值为 .
(1)如图1,若∠MAC=45°,求

(2)如图2,将CM绕点C顺时针旋转60°至CN,连接BN,T为BN的中点,连接AT.
①求证:AM=2AT;
②当AB=AC=2时,直接写出CM+4AT的最小值为 .

如图,在△ABC中,∠BAC=90°,AB=AC,点D,E均在边BC上,且∠DAE=45°
(1)若BD=2,CE=4,则DE=_____.
(2)若∠AEB=75°,则线段BD与CE的数量关系是______.
(1)若BD=2,CE=4,则DE=_____.
(2)若∠AEB=75°,则线段BD与CE的数量关系是______.

如图,将等边△ABC绕点C顺时针旋转90∘得到△DEC,∠ACD的平分线CF交DE于点F,连接AE,AF.
(1)求∠CEA度数;
(2)求证AF⊥CE.
(1)求∠CEA度数;
(2)求证AF⊥CE.

“我们应该讨论一般化、特殊化和类比这些过程本身,他们是获得发现的伟大源泉”——乔治·波利亚.
(1)观察猜想
如图1,在△ABC中,CA=CB,
.点D在AC上,点E在BC上,且CD=C

(2)拓展探究
如图2,在△ABC和△CDE中,CA=CB,CD=CE,
.则BE与AD的数量关系怎样?直线BE与直线AD的位置关系怎样?请说明理由;
(3)解决问题
如图3,在△ABC中,CA=CB,
,BD是△ABC的角平分线,点M是AB的中点.点P在射线BD上,连接PM,以点M为中心,将PM逆时针旋转90°,得到线段MN,请直接写出点A,P,N在同一条直线上时
的值.
(1)观察猜想
如图1,在△ABC中,CA=CB,

A.则BE与AD的数量关系是______,直线BE与直线AD的位置关系是______; |

(2)拓展探究
如图2,在△ABC和△CDE中,CA=CB,CD=CE,

(3)解决问题
如图3,在△ABC中,CA=CB,


如图所示,点
是线段
的中点,
,
.

(1)如图1,若
,求证
是等边三角形;
(2)如图1,在(1)的条件下,若点
在射线
上,点
在点
右侧,且
是等边三角形,
的延长线交直线
于点
,求
的长度;
(3)如图2,在(1)的条件下,若点
在线段
上,
是等边三角形,且点
沿着线段
从点
运动到点
,点
随之运动,求点
的运动路径的长度.





(1)如图1,若


(2)如图1,在(1)的条件下,若点









(3)如图2,在(1)的条件下,若点








