刷题首页
题库
初中数学
题干
“我们应该讨论一般化、特殊化和类比这些过程本身,他们是获得发现的伟大源泉”——乔治·波利亚.
(1)观察猜想
如图1,在△
ABC
中,CA=CB,
.点
D
在
AC
上,点
E
在
BC
上,且CD=C
A.则
BE
与
AD
的数量关系是______,直线
BE
与直线
AD
的位置关系是______;
(2)拓展探究
如图2,在△
ABC
和△
CDE
中,CA=CB,CD=CE,
.则
BE
与
AD
的数量关系怎样?直线
BE
与直线
AD
的位置关系怎样?请说明理由;
(3)解决问题
如图3,在△
ABC
中,CA=CB,
,
BD
是△
ABC
的角平分线,点
M
是
AB
的中点.点
P
在射线
BD
上,连接
PM
,以点
M
为中心,将
PM
逆时针旋转90°,得到线段
MN
,请直接写出点
A
,
P
,
N
在同一条直线上时
的值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-22 10:47:25
答案(点此获取答案解析)
同类题1
如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点(端点除外),点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s,连接AQ、CP交于点M,则在P、Q运动的过程中,
(1)求证:△ABQ ≌ △CAP;
(2)∠CMQ的大小变化吗?若变化,则说明理由,若不变,则求出它的度数;
(3)连接PQ,当点P,Q运动多少秒时,△PBQ是直角三角形?
同类题2
已知,如图△ABC中,∠ABC=45°,AB=BC,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.H是BC边的中点,连接DH与BE相交于点G,
(1)求证BF=AC;
(2)求证CE=
BF.
同类题3
如图,在△
ABC
中,∠
ABC
=45°,
AC
=5,
H
是高
BD
和
CE
的交点,则
BH
的长为( )
A.3
B.4
C.5
D.6
同类题4
已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是( )
A.只有乙
B.只有丙
C.甲和乙
D.乙和丙
同类题5
如图,∠1=∠2,∠B=∠D,求证:AB=CD.
相关知识点
图形的性质
三角形
全等三角形
三角形全等的判定
全等三角形——旋转模型